

СТРОИТЕЛЬНОЕ ПРОИЗВОДСТВО

НАУЧНО-ТЕХНИЧЕСКИЙ ЖУРНАЛ

Издаётся с 2010 г.

CONSTRUCTION PRODUCTION

SCIENTIFIC AND TECHNICAL JOURNAL

Nº4 2024

Рекомендован высшей аттестационной комиссией Министерства образования и науки РФ для публикации научных работ, отражающих основное содержание диссертаций

Журнал включён в Российский индекс научного цитирования (РИНЦ)

Лапидус Азарий Абрамович

ГЛАВНЫЙ РЕДАКТОР

РЕДАКЦИОННЫЙ СОВЕТ

АБРАМОВ И. Л. – д-р техн. наук, доцент, ФГБОУ ВО «Национальный исследовательский Московский государственный строительный университет»

АШИХМИН О. В. – канд. техн. наук, доцент, ФГБОУ ВО «Тюменский индустриальный университет»

АШРАПОВ А. Х. – канд. техн. наук, ФГБОУ ВО «Казанский государственный архитектурно-строительный университет»

ГУРЬЕВА В. А. – д-р техн. наук, доцент, ФГБОУ ВО «Оренбургский государственный университет»

ЗЕЛЕНЦОВ Л. Б. – д-р техн. наук, профессор, ФГБОУ ВО «Донской государственный технический университет»

ИБРАГИМОВ Р. А. – канд. техн. наук, доцент, ФГБОУ ВО «Казанский государственный архитектурно-строительный университет»

ИГНАТЬЕВ А. А. – канд. техн. наук, доцент, ФАУ «РОСДОРНИИ», Управление развития отраслевого образования

КАЗАКОВ Д.А. – канд. техн. наук, ФГБОУ ВО «Воронежский государственный технический университет»

КОНДРАТЬЕВ В. А. – канд. техн. наук, доцент, Самаркандский государственный архитектурно-строительный институт им. Мирзо Улугбека, Узбекистан

КОРОБКОВ С. В. – канд. техн. наук, доцент, ФГБОУ ВО «Томский государственный архитектурно-строительный университет»

КРЮКОВ К. М. – канд. техн. наук, доцент, ФГБОУ ВО «Донской государственный технический университет»

КУЗИНА О. Н. – канд. техн. наук, доцент, ФГБОУ ВО «Национальный исследовательский Московский государственный строительный университет»

КУЗЬМИНА Т. К. – канд. техн. наук, доцент, ФГБОУ ВО «Национальный исследовательский Московский государственный строительный университет»

ЛЕОНОВИЧ С. Н. - д-р техн. наук, профессор, Белорусский национальный технический университет, Республика Беларусь **ЛОГАНИНА В. И.** – д-р техн. наук, профессор, ФГБОУ ВО «Пензенский государственный университет архитектуры и строительства»

МАИЛЯН Л. Р. – д-р техн. наук, профессор, ФГБОУ ВО «Донской государственный технический университет»

МАЛАЕБ В. Ф. – канд. техн. наук, доцент, Ливанский Университет, факультет Искусств и Архитектуры, Ливанская Республика

МАКАРОВ К. Н. – д-р техн. наук, профессор, ФГБОУ ВО «Сочинский государственный университет»

МЕНЕЙЛЮК А. И. – д-р техн. наук, профессор, Одесская государственная академия строительства и архитектуры, Республика Украина

МОЛОДИН В. В. – д-р техн. наук, доцент, ФГБОУ ВО «Новосибирский государственный архитектурно-строительный университет» (Сибстрин)

МОНДРУС В. Л. – д-р техн. наук, профессор, ФГБОУ ВО «Национальный исследовательский Московский государственный строительный университет»

МОРОЗЕНКО А. А. – д-р техн. наук, профессор, ФГБОУ ВО «Национальный исследовательский Московский государственный строительный университет»

ОЛЕЙНИК П. П. – д-р техн. наук, профессор, ФГБОУ ВО «Национальный исследовательский Московский государственный строительный университет»

ПИКУС Г. А. – канд. техн. наук, доцент, ФГАОУ ВО «Южно-Уральский государственный университет»

ПОПОВА О. Н. – канд. техн. наук, доцент, ФГАОУ ВО «Северный (Арктический) федеральный университет им М. В. Ломоносова»

САБИТОВ Л. С. - д-р техн. наук, доцент, ФГАОУ ВО «Казанский (Приволжский) федеральный университет»

СУЛЕЙМАНОВА Л. А. – д-р техн. наук, профессор, ФГБОУ ВО «Белгородский государственный технологический университет им. В. Г. Шухова»

ТАМРАЗЯН А. Г. – д-р техн. наук, профессор, ФГБОУ ВО «Национальный исследовательский Московский государственный строительный университет»

ТЕР-МАРТИРОСЯН А. 3. – д-р техн. наук, профессор, ФГБОУ ВО «Национальный исследовательский Московский государственный строительный университет»

ФЕДОСОВ С. В. – д-р техн. наук, профессор, ФГБОУ ВО «Национальный исследовательский Московский государственный строительный университет»

ФЕДЮК Р. С. - д-р техн. наук, доцент, ФГАОУ ВО «Дальневосточный федеральный университет»

ФОМИН Н. И. - канд. техн. наук, доцент, ФГАОУ ВО «УрФУ имени первого Президента России Б. Н. Ельцина»

ХАВИН Д. В. – д-р эконом. наук, профессор, ФГБОУ ВО «Нижегородский государственный архитектурно-строительный университет»

ЦОПА Н. В. – д-р эконом. наук, профессор, ФГОУ ВО «Крымский федеральный университет им. В. И. Вернадского», Академия строительства и архитектуры

ЭКЛЕР Н. А. – канд. техн. наук, ФГБОУ ВО «Хакасский государственный университет им. Н. Ф. Катанова»

ЮДИНА А. Ф. – д-р техн. наук, профессор, ФГБОУ ВО «Санкт-Петербургский государственный архитектурностроительный университет»

ЮСУПОВ Х. И. – канд. техн. наук, профессор, Ташкентский архитектурно-строительный университет, Узбекистан

СТРОИТЕЛЬНОЕ ПРОИЗВОДСТВО № 4 (52)'2024

СОДЕРЖАНИЕ

МЕТОД ФОРМИРОВАНИЯ ОРГАНИЗАЦИОННО-ТЕХНИЧЕСКИХ РЕШЕНИЙ ПРИ СТРОИТЕЛЬСТВЕ Лапидус А. А., Файзуллин И. Э., Михальченко О. Ю
ИНТЕЛЛЕКТУАЛЬНЫЕ СИСТЕМЫ В АДДИТИВНЫХ СТРОИТЕЛЬНЫХ ТЕХНОЛОГИЯХ Фетисова М. А
ИССЛЕДОВАНИЕ МЕТОДОВ ЭНЕРГОСБЕРЕЖЕНИЯ ПРИ ПРОЕКТИРОВАНИИ БЫСТРОВОЗВОДИМЫХ ЗДАНИЙ ИЗ ЛЁГКИХ СТАЛЬНЫХ КОНСТРУКЦИЙ Коротеев Д. Д., Хуан Ц., Скуратова И. А
КОНЦЕПТУАЛЬНАЯ МОДЕЛЬ СИСТЕМЫ УПРАВЛЕНИЯ ЦИФРОВЫМИ ДВОЙНИКАМИ ПРОЕКТА СТРОИТЕЛЬСТВА ИЗ КРУПНОГАБАРИТНЫХ ЖЕЛЕЗОБЕТОННЫХ МОДУЛЕЙ НА ОСНОВЕ БОЛЬШИХ ЯЗЫКОВЫХ МОДЕЛЕЙ Амбарцумян С. А., Мочалин Д. Е
ПРИМЕНЕНИЕ ТРЁХГРАННЫХ СЕЧЕНИЙ РЕШЁТЧАТЫХ ОПОР ВЗАМЕН ЧЕТЫРЁХГРАННЫХ НА ПРИМЕРЕ ОПОРЫ ВОЗДУШНОЙ ЛИНИИ МАРКИ У110-4+5 Сабитов Л. С., Абдуллазянов Э. Ю., Адушкин К. Г., Айзатуллин М. М., Токарева Л. А
МОДЕЛИРОВАНИЕ ПРОДОЛЖИТЕЛЬНОСТИ ЭТАПОВ КОНКУРСНЫХ ПРОЦЕДУР Олейник П. П., Казарян Р. Р., Нелина Д. В
ИНФОРМАЦИОННЫЕ СИСТЕМЫ ЖКХ В ЦИФРОВОЙ ВЕРТИКАЛИ СТРОИТЕЛЬНОЙ ОТРАСЛИ Попова О. Н., Юдина А. Ф., Заостровская А. С
ПРОЧНОСТЬ КОМПОЗИТОВ НА ОСНОВЕ СЫРЬЕВЫХ КОМПОНЕНТОВ, ПРОШЕДШИХ ПЛАЗМЕННУЮ ИЛИ МЕХАНОМАГНИТНУЮ АКТИВАЦИЮ Ибрагимов Р. А., Налбандян Г. В., Ушков В. А., Королев Е. В., Зигангирова Л. И
ОСНОВНЫЕ АСПЕКТЫ ПРОИЗВОДИТЕЛЬНОСТИ ТРУДА ПРИ КАПИТАЛЬНОМ PEMOHTE В АРКТИЧЕСКОЙ ЗОНЕ Фатуллаев Р. С., Боровкова А. Е., Кулаков А. С., Галаган А. М
СВОД ПРАВИЛ «НАУЧНО-ТЕХНИЧЕСКОЕ СОПРОВОЖДЕНИЕ ИЗЫСКАНИЙ, ПРОЕКТИРОВАНИЯ И СТРОИТЕЛЬСТВА. ОБЩИЕ ПОЛОЖЕНИЯ». ПРИМЕНЕНИЕ ПОЛОЖЕНИЙ И ОСНОВНЫЕ ВОПРОСЫ ОТРАСЛИ Капырин П. Д., Загорская А. В
АКТУАЛЬНОСТЬ НАУЧНО-ТЕХНИЧЕСКОГО СОПРОВОЖДЕНИЯ ПРИ ОБОСНОВАНИИ СООТВЕТСТВИЯ КОНСТРУКТИВНЫХ РЕШЕНИЙ ТРЕБОВАНИЯМ ТЕХНИЧЕСКОГО РЕГЛАМЕНТА С УЧЁТОМ ИЗМЕНЕНИЙ В СИСТЕМЕ СТРОИТЕЛЬНО-ТЕХНИЧЕСКОГО НОРМИРОВАНИЯ Капырин П. Д., Загорская А. В
ОЦЕНКА ПРОДОЛЖИТЕЛЬНОСТИ ОПАЛУБОЧНЫХ РАБОТ ПО ГЭСН Кабанов В. Н., Бородкин К. Ю
ОБЗОР ОТЕЧЕСТВЕННОГО И ЗАРУБЕЖНОГО ОПЫТА ПОВЫШЕНИЯ ЭФФЕКТИВНОСТИ СТРОИТЕЛЬНО-МОНТАЖНЫХ РАБОТ ПРИ СОЗДАНИИ ПОДЗЕМНЫХ СООРУЖЕНИЙ Говоруха П. А., Стяжкина В. О
ИСКУССТВЕННЫЕ НЕЙРОСЕТИ В ОЦЕНКЕ КОМПЛЕКСНОГО ПОКАЗАТЕЛЯ КАЧЕСТВА ОРГАНИЗАЦИОННО-ТЕХНОЛОГИЧЕСКИХ РЕШЕНИЙ ПРИ СТРОИТЕЛЬСТВЕ НА КРАЙНЕМ СЕВЕРЕ Лапидус А. А., Абиленцев С. Ю
МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ПОДГОТОВКИ СТУДЕНТОВ ДЛЯ АКТИВИЗАЦИИ ЦИФРОВОЙ ТРАНСФОРМАЦИИ СТРОИТЕЛЬНОЙ ОТРАСЛИ Фомин Н. И., Бессонова О. А

ОСНОВНЫЕ СОВРЕМЕННЫЕ ПОДХОДЫ ПРИ ОПРЕДЕЛЕНИИ НЕОБХОДИМОСТИ И ПРИОРИТЕТНОСТИ СТРОИТЕЛЬСТВА УЛИЧНО-ДОРОЖНОЙ СЕТИ ДЛЯ ЗАСТРОЙКИ Киевский И. Л., Дёмин В. Д
МОДЕЛИРОВАНИЕ СИСТЕМЫ КОНТРОЛЯ КАЧЕСТВА ИНЖЕНЕРНЫХ СИСТЕМ ПРИ ВОЗВЕДЕНИИ ОБЪЕКТОВ ВЫСОТНОГО СТРОИТЕЛЬСТВА Олейник П. П., Абас М. Х
САМООРГАНИЗОВАННАЯ КРИТИЧНОСТЬ СТРОИТЕЛЬНЫХ СИСТЕМ Лапидус А. А., Михальченко О. Ю
ОПРЕДЕЛЕНИЕ КОМПЛЕКСНОЙ ТЕХНОЛОГИЧНОСТИ СБОРНО-МОНОЛИТНЫХ СИСТЕМ ГРАЖДАНСКИХ ЗДАНИЙ МЕТОДОМ ЭКСПЕРТНОЙ ОЦЕНКИ Фомин Н. И., Колмакова Ю. Д
МЕХАНИЗМЫ И ПРИМЕНЕНИЕ ЭНЕРГОСБЕРЕГАЮЩИХ ТЕХНОЛОГИЙ ПРИ КАПИТАЛЬНОМ РЕМОНТЕ МНОГОКВАРТИРНЫХ ДОМОВ Чернышов Л. Н., Смолина Л. Ф
ЭТАПЫ ВЫБОРА ЭКСПЕРТНОЙ ГРУППЫ ДЛЯ ОЦЕНКИ ФУНКЦИЙ ТЕХНИЧЕСКОГО ЗАКАЗЧИКА ПРИ ВВОДЕ ОБЪЕКТА В ЭКСПЛУАТАЦИЮ Топчий Д. В., Лавреняк И. В
МОДЕЛИРОВАНИЕ В ВРММ И РАСЧЁТ ПРОДОЛЖИТЕЛЬНОСТИ ПОДГОТОВИТЕЛЬНЫХ ПРОЦЕДУР ДЛЯ ПРОВЕДЕНИЯ КАПИТАЛЬНОГО РЕМОНТА МКД Кузьмина Т. К., Бабушкина Д. Д., Тихомирова В. Ю., Валяев А. И., Сухоруков А. Е

УДК 69.05

DOI: 10.54950/26585340_2024_4_3

Метод формирования организационно-технических решений при строительстве объектов капитального строительства

Method for Forming Organizational and Technical Solutions During the Construction of Capital Construction Projects

Лапидус Азарий Абрамович

Доктор технических наук, профессор, заведующий кафедрой «Технологии и организация строительного производства», ФГБОУ ВО «Национальный исследовательский Московский государственный строительный университет» (НИУ МГСУ), Россия, 129337, Москва, Ярославское шоссе, 26, lapidusaa@mgsu.ru

Lapidus Azariy Abramovich

Doctor of Technical Sciences, Professor, Head of the Department of Technologies and Organization of Construction Production, National Research Moscow State University of Civil Engineering (NRU MGSU), Russia, 129337, Moscow, Yaroslavskoe shosse, 26, lapidusaa@mgsu.ru

Файзуллин Ирек Энварович

Кандидат экономических наук, доцент, Министр строительства и жилищно-коммунального хозяйства Российской Федерации, Россия, 119435, Москва, улица Большая Пироговская, 23

Fayzullin Irek Envarovich

Candidate of Economic Sciences, Associate Professor, Minister of Construction and Housing and Communal Services of the Russian Federation, Russia, 119435, Moscow, Bolshaya Pirogovskaya ulitsa, 23

Михальченко Олег Юрьевич

Кандидат технических наук, доцент кафедры технологии и организации строительства, ФГБОУ ВО «Новосибирский государственный архитектурно-строительный университет (Сибстрин)» (НГАСУ), Россия, 630008, Новосибирск, улица Ленинградская, 113, oleg mik@mail.ru

Mikhalchenko Oleg Yurievich

Candidate of Engineering Sciences, Associate Professor of the Department of Technology and Organization of Construction, Novosibirsk State University of Architecture and Civil Engineering (Sibstrin), Russia, 630008, Novosibirsk, Leningradskaya ulitsa, 113, oleg_mik@mail.ru

Аннотация. В современной России, где реализация национальных проектов требует максимальной надёжности и высокой эффективности, становится особенно важным совершенствование методик для принятия организационно-технических решений. Национальные проекты направлены на реализацию стратегических приоритетов страны, таких как улучшение инфраструктуры, создание комфортных условий проживания, развитие социальных сфер и рост производственных мощностей.

Важной задачей является успешное строительство объектов капитального строительства, которое должно быть завершено в установленные сроки, с оптимальным использованием бюджета и при высоком уровне качества. Своевременное и точное принятие организационно-технических решений для строительства таких объектов играет ключевую роль. Этот процесс сопряжён с различными рисками, такими как удлинение сроков, увеличение стоимости, нехватка ресурсов и влияние внешних факторов. Чтобы справляться с такими вызовами, требуется использование современных подходов, включающих детальный анализ, моделирование и прогнозирование возможных проблем. Важно также применять инновационные методы организации и технические решения, что позволяет более гибко и эффективно управлять проектами.

Abstract. In modern Russia, where the successful implementation of national projects requires maximum reliability and high efficiency, it becomes especially important to enhance methods for making organizational and technical decisions. These national projects are focused on realizing the country's strategic priorities, such as improving infrastructure, creating comfortable living conditions, developing social spheres, and expanding production capacities.

A key task is the successful construction of capital development projects, which must be completed on time, within budget, and with high quality standards. Timely and accurate organiza-

В статье рассматривается метод принятия организационно-технических решений для строительства объектов капитального строительства, учитывающий случайный характер строительного производства, основанный на принципах теории хаоса, методов Монте-Карло и анализа иерархий. Метод предусматривает, что в условиях воздействия множества рисковых факторов строительная система ведёт себя как самоорганизованно-критическая, демонстрируя способность адаптироваться к изменениям и повышая устойчивость к внешним воздействиям. В рамках исследования получены аналитические зависимости, которые дают возможность прогнозировать вероятность появления точек бифуркации - ключевых моментов, когда строительная система может кардинально изменить своё развитие – как в отдельных её элементах, так и в более сложных структурах. Предложенный метод обладает значительным потенциалом для повышения эффективности проектного управления и позволяет заранее моделировать возможные сценарии развития, минимизируя риски сбоев и повышая точность прогнозирования критических ситуаций.

Ключевые слова: управление рисками, бифуркации, метод Монте-Карло, метод анализа иерархий, строительство, организационно-технические решения.

tional and technical decision-making for such construction projects is crucial. This process is associated with various risks, such as delays, cost overruns, resource shortages, and external influences. To address these challenges, modern approaches involving detailed analysis, modeling, and forecasting of potential issues are essential. Additionally, applying innovative organizational and technical methods enables more flexible and effective project management.

This article presents a method for making organizational and technical decisions in the construction of capital projects that accounts for the stochastic nature of the construction process.

Based on chaos theory principles, Monte Carlo methods, and hierarchy analysis, this approach assumes that, under the influence of multiple risk factors, the construction system behaves as a self-organized critical system, demonstrating adaptability and resilience to external impacts. The study developed analytical dependencies that allow predicting the probability of bifurcation points key moments when the construction system may drastically shift its course - within both individual elements and more complex

Материалы и методы

Материалы и методы исследования: теория хаоса, метод Монте-Карло, метод анализа иерархий, анализ, синтез, моделирование.

Введение

Начиная с 2019 года в России реализуются масштабные государственные программы и национальные проекты, включающие строительство огромного количества объектов капитального строительства, в том числе социального назначения (например, по национальным проектам «Демография», «Образование», «Здравоохранение» и др.).

Бюджет национальных проектов в общей сложности составляет 25,7 трлн руб. Финансирование национальных проектов предусмотрено из бюджетов различных уровней, в том числе бюджетов субъектов Российской Федерации. К примеру, на реализацию национальных проектов на территории Новосибирской области на период до 2024 года из бюджетов всех уровней выделено более 157 млрд руб. Так, в 2020 году выделено более 9,8 млрд руб. При этом к вводу было запланировано 65 социальных объектов: 25 объектов образования (5 школ и 20 детских садов), 37 объектов здравоохранения (из них 35 фельдшерско-акушерских пунктов), 2 объекта культуры, 1 объект спортивного назначения.

На реализацию национального проекта «Демография» на территории Новосибирской области в 2020 году выделено более 7,6 млрд рублей. Планировалось ввести в эксплуатацию Региональный центр волейбола (введён в эксплуатацию) и 19 детских садов (фактически введено только 16).

На реализацию национального проекта «Образование» на территории Новосибирской области в 2020 году выделено более 270 млн рублей. По плану – возведение 5 школ, по факту – только 1.

На реализацию национального проекта «Здравоохранение» на территории Новосибирской области в 2020 году выделено более 518 млн рублей. Запланирован structures. The proposed method holds significant potential for improving project management effectiveness by enabling early scenario modeling to minimize risk disruptions and increase the accuracy of forecasting critical situations.

Keywords: risk management, bifurcations, Monte Carlo method, hierarchy analysis method, construction, organizational and technical solutions.

ввод 37 объектов здравоохранения (из них 35 фельдшерско-акушерских пунктов), фактически введено только 26 фельдшерско-акушерских пунктов.

Таким образом, даже при колоссальных объёмах финансирования не всегда объекты вводятся в установленные сроки. Аналогичная ситуация складывается не только на территории Новосибирской области, но и в целом по стране. Такое положение дел можно отчасти объяснить отсутствием единого методического подхода к системе проектирования и строительства объектов капитального строительства, спецификой форм организации производства, а также недостаточной проработкой вопросов прогнозирования поведения сложных строительных систем в стохастических условиях строительного производства [1; 2]. Все эти факторы могут в итоге привести к срыву сроков строительства, снижают эффективность деятельности строительных организаций.

Результаты

Реализуемые в настоящее время программы имеют сложную иерархическую структуру (рисунок 1). В такой системе количество проектов в программе, объектов в проекте и работ в объекте может быть любое, кроме того, каждый элемент системы подвержен влиянию случайных рисков, возникающих в условиях строительного производства, что усложняет её анализ. Одной из задач принятия организационно-технических решений является разработка аналитического инструмента, позволяющего изучать влияние отклонений, вызванных рисками, возникающих на любом уровне иерархии, на остальные её элементы на всех этапах жизненного цикла объекта.

С целью решения вышеуказанных проблем разработан метод формирования организационно-технических решений при строительстве объектов капитального строительства, предусматривающий 5 этапов.

На первом этапе метода на основании данных проектов организации строительства объектов капитального строительства, входящих в программу, формируются нормативные параметры каждого элемента системы.

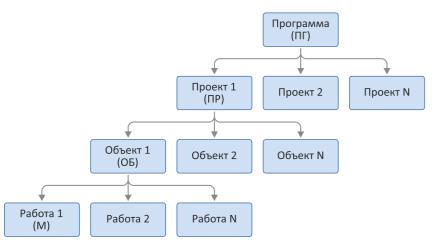


Рис. 1. Структура программ строительства объектов капитального строительства **Fig. 1.** Structure of capital construction projects construction programs

Эт	апы жизненного цикла	Продолжительность нормативная $(T_{\!{\scriptscriptstyle {\rm HOPM}}})$, мес.	Затраты нормативные <i>(З_{норм}), мес</i> .	Продолжительность фактическая $(T_{\phi_{axm}})$, мес.	Затраты фактические <i>(З_{факт}), руб</i> .
Проектно-изыскательские работы		11	9761000	11	9761000
Подготовительные работы		1,5	2 333 110	1,5	2 333 110
	Работы по возведению фундамента	4	12 524 670	4,5	12 963 000
Строительство	Работы по возведению несущих и ограждающих конструкций	10,5	205 837 160	11	207 543 210
	Прокладка инженерных сетей	5,5	17 741 710	6	17 741 710
	Отделочные работы	8	77 345 530	8	78 452 310
Благоустройство территории		2,5	32 329 720	2,5	31 245 000
Ввод в эксплуатацию		1	6 539 530	1	6 539 530
По объекту в це	елом	17	483054490		

Табл. 1. Пример таблицы сбора исходных данных (объект – детский сад) **Tab. 1.** Example of a table for collecting initial data (object - kindergarten)

В качестве основных параметров приняты:

- нормативные значения продолжительности (T) выполнения отдельных видов работ, входящих в жизненный цикл объекта капитального строительства, объектов, проектов, в которые эти объекты входят, и программы в целом;
- нормативные значения затрат (3) на выполнение отдельных видов работ, входящих в жизненный цикл объекта капитального строительства, объектов, проектов, в которые эти объекты входят, и программы в целом.

Структурные модели отклонений затрат и продолжительности реализации программы можно представить в следующем виде [3; 4]:

$$\Delta 3_{\Pi T} = \left(\bigcup_{i,n} \Delta 3_{\Pi P i} \left(\bigcup_{i,n} \Delta 3_{O E i} \left(\bigcup_{i,n} \Delta 3_{M i} \right) \right) \right), \tag{1}$$

$$\Delta T_{\Pi T} = \left(\bigcup_{i,n} \Delta T_{\Pi P i} \left(\bigcup_{i,n} \Delta T_{O E i} \left(\bigcup_{i,n} \Delta T_{M i} \right) \right) \right), \tag{2}$$

$$\Delta T_{III'} = \left(\bigcup_{i,n} \Delta T_{IIPi} \left(\bigcup_{i,n} \Delta T_{OEi} \left(\bigcup_{i,n} \Delta T_{Mi} \right) \right) \right), \tag{2}$$

где $\Delta 3$ и ΔT — отклонения от нормативов параметров затрат и продолжительности работ; i, n — соответственно индексы параметров объектов совмещённых потоков, M – работа, OB – объект, ΠP – проект, $\Pi \Gamma$ – программа.

На основе этих зависимостей и статистических данных ПОС объектов капитального строительства, которые реализуются в рамках государственных программ, рассчитываются вероятности возникновения рисков в зависимости от отклонений затрат и продолжительности на каждом уровне иерархии.

Для целей исследования были проанализированы статистические данные ПОС объектов, входящих в региональную программу Новосибирской области. Программа включает 3 проекта: «Здравоохранение», «Образование», «Демография», каждый из которых содержит ряд объектов капитального строительства: здравоохранение (7 объектов), образование (5 объектов), демография (3 объекта).

В каждом объекте проанализированы данные по 8 аналогичным работам, входящим в жизненный цикл каждого объекта капитального строительства (таблица 1).

На втором этапе метода с учётом основных положений метода анализа иерархий (МАИ) и на основании исходных данных, полученных на первом этапе, формируются матрицы отклонений по продолжительности и затратам для каждого элемента системы с учётом всех возможных сочетаний отклонений, возникающих в системе [5: 6]. Отклонения элементов системы по продолжительности и

2			Модели	отклонений			
Элемент	Потоки		Структурная	Процессная			
		Программный поток					
Программа	Проектные потоки	Интегрированный поток	$\Pi\Gamma = \bigcup_{i,n} \Pi\Gamma_i$	$\Delta \mathcal{3}_{\Pi\Gamma} = \sum_{i,n} \Delta \mathcal{3}_{\Pi\Gamma i}$ $\Delta \mathcal{T}_{\Pi\Gamma} = \sum_{i,n} \Delta t_{\Pi\Gamma i}$			
	Проектный поток						
Проект	оект Объектные потоки Комплексный поток		$ \Pi P = \bigcup_{i,n} O \mathcal{D}_i $	$\Delta \mathcal{3}_{\Pi\Gamma} = \sum_{i,n} \Delta \mathcal{3}_{OBi}$ $\Delta \mathcal{T}_{\PiP} = \sum_{i,n} \Delta t_{OBi}$			
		Объектный поток					
Объект	Работы	Специализированный поток	$ \Pi P = \bigcup_{i,n} M_i $	$\Delta \mathcal{3}_{OB} = \sum_{i,n} \Delta \mathcal{3}_{Mi}$ $\Delta \mathcal{T}_{OB} = \sum_{i,n} \Delta t_{Mi}$			

Табл. 2. Структурные и процессные модели **Tab. 2.** Structural and process models

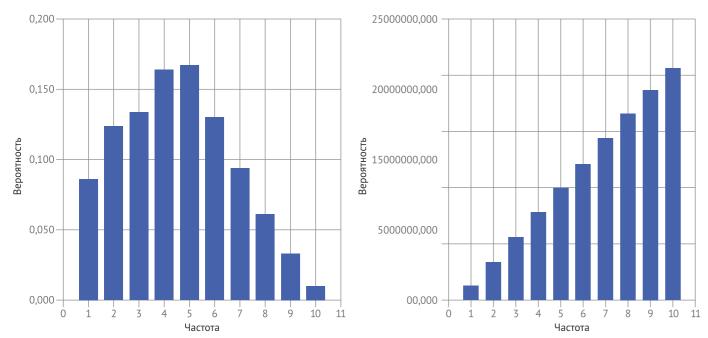


Рис. 2. Пример гистограмм плотности распределения вероятностей и отклонений затрат и продолжительности для элемента «объект»

Fig. 2. An example of histograms of probability density distributions and deviations of costs and duration for the "object" element

затратам определяются как разность между фактическими и проектными значениями:

$$\Delta T = T_{\phi a \kappa m} - T_{\mu o \rho \kappa}; \tag{3}$$

$$\Delta 3 = 3_{\text{maxm}} - 3_{\text{nopm}}.$$
 (4)

Для определения системы потоков программы формируются структурные и процессные модели элементов, входящих в программу (таблица 2).

Для приведённой экспериментальной выборки количество комбинаций отклонений составило:

- на уровне объекта: 1679616 комбинаций по отклонениям затрат и столько же по отклонениям продолжительности;
- на уровне проекта: $7,7*10^{46}$ комбинаций по отклонениям затрат и $3,17*10^{36}$ комбинаций по отклонениям продолжительности;
- на уровне программы: $4,5*10^{140}$ комбинаций по отклонениям затрат и $3,2*10^{109}$ комбинаций по отклонениям продолжительности.

На основании полученных данных строятся гистограммы плотности распределения вероятностей и отклонений затрат и продолжительности (рисунок 2). Также определяется зависимость вероятности отклонений для каждого элемента системы (рисунок 3). Для этого использовались принципы метода Монте-Карло, учитывающие, что статистические данные об отклонениях подчиняются нормальному закону распределения [7]. Вариации отклонений охватывают весь спектр возможных комбинаций для каждого элемента структуры системы.

На основе полученных экспериментальных данных разработан аналитический комплекс. Получены расчётные зависимости вероятностей (Y) от величины отклонений (X3, Xm). Полученные зависимости описываются квадратным уравнением:

$$Y = -ax^2 + bx + c. ag{5}$$

На третьем этапе определяются критические состояния самоорганизующейся системы строительства объектов с учётом её бифуркаций. Изучая поведение системы реализации программ строительства объектов капиталь-

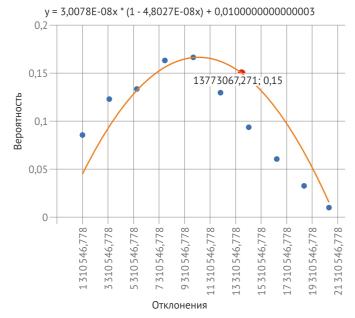
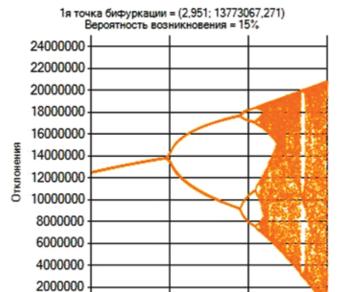


Рис. 3. Пример зависимости вероятности от отклонений затрат и продолжительности для элемента «объект»

Бід. 3. An example of the dependence of probability on cost and


Fig. 3. An example of the dependence of probability on cost and duration deviations for the "object"

ного строительства в стохастических условиях строительного производства, автор пришёл к выводу, что система проявляет признаки хаоса и ведёт себя как самоорганизованно-критическая система.

Самоорганизованная критичность — это свойство динамических систем, которое проявляется в наличии точек бифуркации. Вблизи этих точек поведение системы становится неустойчивым, и даже небольшое воздействие может привести к значительным изменениям в её повелении [8: 9].

Полученные зависимости (5) путём математических преобразований принимают вид функции Ферхюльста канонического вида:

$$x_{n+1} = rx_n(1 - x_n). (6)$$

Рис. 4. Пример бифуркационной диаграммы по затратам для элемента «объект»

2,999

Fig. 4. An example of a bifurcation diagram for costs for the "object" element

Параметр г

3,499

3,999

Далее необходимо построить бифуркационные диаграммы по затратам и продолжительности как для отдельных элементов системы, так и всей системы в целом (рисунок 4) и определить вероятность появления бифурка-

СПИСОК ЛИТЕРАТУРЫ

2,499

- 1. Гусаков, А. А. Организационно-технологическая надёжность строительства / А. А. Гусаков, С. А. Веремеенко, А.В. Гинзбург и др. Москва: SvR-Apryc, 1994. 472 с.
- 2. Гусаков, А. А. Системотехника в строительстве / А. А. Гусаков. Москва : Стройиздат, 1993. 245 с.
- Михальченко, О. Ю. Организационная надёжность планирования строительства объектов: дисс. канд. техн. наук: 05.23.08 / Михальченко Олег Юрьевич; Новосибирский государственный архитектурно-строительный университет. Новосибирск: НГАСУ (Сибстрин), 2012. 150 с.
- Герасимов, В. В. Интегрированная надёжность эффективности управления реализацией проектов / В. В. Герасимов, А. Л. Кунц, О. Ю. Михальченко // Сборник научных трудов «Теория и практика инновационной стратегии региона». Кемерово: КТУ, 2011. С. 76–82.

REFERENCES

- Gusakov, A. A. Organizatsionno-tekhnologicheskaya nadezhnost' stroitel'stva [Organizatsionno-tekhnologicheskaya nadyozhnost' stroitel'stva] / A. A. Gusakov, S. A. Veremenko, A. V. Ginzburg et al. Moscow: SvR-Argus, 1994. 472 p.
- 2. Gusakov, A. A. Sistemotekhnika v stroitelstve [Sistemotekhnika v stroitel'stve] / A. A. Gusakov. Moscow : Stroyizdat, 1993. 245 p.
- Mikhalchenko, O. Yu. Organizatsionnaya nadezhnost' planirovaniya stroitel'stva ob'ektov: kand. tekhn. Nauk: 05.23.08 [Organizational reliability of facility construction planning: dis. ...Candidate of Technical Sciences: 05.23.08] / Mikhalchenko Oleg Yuryevich; Novosibirsk State University of Architecture and Civil Engineering. Novosibirsk: NGASU (Sibstrin), 2012. 150 p.
- 4. Gerasimov, V. V. Integrirovannaya nadyozhnost' ehffektivnosti upravleniya realizatsiej proektov [Integrated reliability of project management efficiency] / V. V. Gerasimov, A. L. Kuntz,

СТРОИТЕЛЬНОЕ ПРОИЗВОДСТВО № 4 (52)'2024

ции в системе. Таким образом, можно прогнозировать появление хаотических проявлений в строительной системе и с помощью организационно-технических мероприятий минимизировать их последствия. Это и является задачей четвёртого этапа. На этом этапе необходимо разработать комплекс организационно-технических мероприятий для снижения вероятности бифуркаций в системе.

Пятый этап предполагает внедрение комплекса организационно-технических мероприятий и обязательный мониторинг состояния как отдельных элементов, так и системы в целом. Разработанные мероприятия считаются успешными, если при их применении вероятность возникновения бифуркаций элементов системы снижается.

Обсуждение

Дальнейшие исследования направлены на определение граничных значений вероятности возникновения бифуркаций элементов строительной системы, разработку системы мониторинга и разработку шаблонных организационно-технических мероприятий, позволяющих снизить вероятность хаотических проявлений в строительной системе.

Заключение

Разработанный метод принятия организационнотехнических решений при строительстве объектов капитального строительства позволяет принимать научно обоснованные организационно-технические решения, позволяющие минимизировать воздействие факторов риска на сложную строительную систему, а также осуществлять мониторинг системы с целью недопущения проявления её хаотического поведения, вызванного факторами риска.

- Лапидус, А. А. Организационно-технологическая надёжность производственно-логистических процессов в строительстве / А. А. Лапидус, Г. Б. Сафарян // Наука и бизнес: пути развития. – 2019. – № 3. – С. 121–125.
- 6. Сафарян, Г.Б. Моделирование стохастических рисков в строительной системе / Г.Б. Сафарян, А.А. Лапидус // Перспективы науки. 2023. № 12. С. 155–162.
- Rubinstein, R. Y. Simulation and the Monte Carlo method / R. Y. Rubinstein, D. Kroese. – Third Edition. – Hoboken, New Jersey, USA: John Wiley & Sons, 2011.
- Bak, P. How nature works: The science of self-organized criticality. Copernicus / P. Bak. DOI https://doi.org/10.1007/978-1-4757-5426-1. 1996.
- Bak, P. Self-organized criticality / P. Bak, C. Tang, K. Wiesenfeld. DOI https://doi.org/10.1103/PhysRevA.38.364 // Physical Review A. – 1988. – Vol. 38, Iss. 1. – Pp. 364–374.
- O. Yu. Mikhalchenko // Sbornik nauchnykh trudov «Teoriya i praktika innovatsionnoj strategii regiona» [Collection of scientific papers "Theory and practice of innovation strategy of the region"]. Kemerovo: KTU, 2011. Pp. 76–82.
- Lapidus, A. A. Organizatsionno-tekhnologicheskaya nadezhnost' proizvodstvenno-logisticheskikh protsessov v stroitel'stve [Organizational and technological reliability of production and logistics processes in construction] / A. A. Lapidus, G. B. Safaryan // Nauka i biznes: puti razvitiya [Science and business: ways of development]. 2019. No. 3. Pp. 121–125.
- 6. Safaryan, G. B. Modelirovanie stokhasticheskikh riskov v stroitel'noj sisteme [Modeling stochastic risks in the construction system] / G. B. Safaryan, A. A. Lapidus // Perspektivy nauki [Perspectives of science]. 2023. No. 12. Pp. 155–162.
- Rubinstein, R. Y. Simulation and the Monte Carlo method / R. Y. Rubinstein, D. Kroese. – Third Edition. – Hoboken, New Jersey, USA: John Wiley & Sons, 2011.

7

- 8. Bak, P. How nature works: The science of self-organized criticality. Copernicus / P. Bak. - DOI https://doi.org/10.1007/978-1-4757-5426-1. - 1996.
- 9. Bak, P. Self-organized criticality / P. Bak, C. Tang, K. Wiesenfeld. - DOI https://doi.org/10.1103/PhysRevA.38.364 // Physical Review A. - 1988. - Vol. 38, Iss. 1. - Pp. 364-374.

УДК 69.05 DOI: 10.54950/26585340 2024 4 8

Интеллектуальные системы в аддитивных строительных технологиях

Intelligent Systems in Additive Construction Technologies

Фетисова Мария Александровна

Кандидат технических наук, доцент, доцент кафедры «Технологии и организация строительного производства», ФГБОУ ВО «Национальный исследовательский Московский государственный строительный университет» (НИУ МГСУ), Россия, 129337, Москва, Ярославское шоссе, 26, FetisovaMA@mgsu.ru

Fetisova Maria Alexandrovna

Candidate of Engineering Sciences, Associate Professor, Associate Professor of the Department of Technologies and Organization of Construction Production, National Research Moscow State University of Civil Engineering (NRU MGSU), Russia, 129337, Moscow, Yaroslavskoe shosse, 26, FetisovaMA@mgsu.ru

Аннотация. Применение строительных аддитивных технологий открывает новые горизонты в архитектуре и строительстве, обеспечивая инновационные решения для удовлетворения потребностей современного общества. Эти технологии, основанные на добавочном производстве, позволяют создавать конструкции на основе трёхмерных моделей, что существенно сокращает время и затраты на строительство. Среди основных преимуществ аддитивных технологий можно выделить возможность проектирования сложных геометрических форм, которые сложно реализовать традиционными методами. Это ведёт к более эффективному использованию материалов и уменьшению их количества, а значит, снижению экологической нагрузки. Кроме того, 3D-печать в строительстве позволяет сократить количество отходов и минимизировать транспортные расходы за счёт локального производства.

В последние годы наблюдается активное внедрение адди-

Abstract. The use of additive building technologies opens up new horizons in architecture and construction, providing innovative solutions to meet the needs of modern society. These technologies, based on incremental manufacturing, allow structures to be created from 3D models, which significantly reduces construction time and costs. Among the main advantages of additive technologies is the ability to design complex geometric shapes that are difficult to implement using traditional methods. This leads to more efficient use of materials and a reduction in their quantity, which means a reduction in environmental burden. In addition 3D printing in construction can reduce waste and minimize transportation costs through local production.

In recent years, there has been an active implementation of additive technologies in various areas, from residential and

тивных технологий в различные сферы: от жилых и коммерческих зданий до инфраструктурных объектов. Проекты, реализованные с использованием 3D-печати, уже показывают свою эффективность и устойчивость. В результате строительные аддитивные технологии могут стать ключевым фактором в достижении устойчивого развития, открывая новые возможности для творчества и инноваций в этой стремительно развивающейся

Целью данного исследования является выявление наличия интеллектуальных систем в строительной аддитивной технологии, а также определение факторов, влияющих на развитие данной строительной технологии.

Ключевые слова: аддитивные технологии, интеллектуальная система, строительство, 3D-печать здания, технические интеллектуальные системы, интеллектуальная система, адаптивные информационные системы.

commercial buildings to infrastructure facilities. Projects implemented using 3D printing will already show their efficiency and sustainability. As a result, construction additive technologies can become a key factor in achieving sustainable development, opening up new opportunities for creativity and innovation in this rapidly evolving field.

The purpose of this study is to identify the presence of intelligent systems in additive construction technology, as well as to determine the factors influencing the development of this construction technology.

Keywords: additive technologies, intelligent system, construction, 3D modeling of buildings, intelligent technical systems, intelligent system, adaptive systems.

Возведение зданий и сооружений с применением аддитивных технологий, действительно, представляет собой одно из перспективных направлений в строительной отрасли, которое может существенно изменить подходы к проектированию и строительству. Стратегия развития аддитивных технологий в России нацелена на создание конкурентоспособной отрасли, способной отвечать современным требованиям. К основным преимуществам аддитивного строительства можно отнести:

- 1. Сокращение сроков строительства: использование 3D-печати позволяет значительно ускорить процесс возведения, что особенно актуально для крупных проектов.
- 2. Снижение затрат: благодаря эффективному использованию материалов и автоматизации про-

- цессов, аддитивные технологии могут привести к снижению общих затрат на строительство.
- 3. Гибкость в проектировании: возможность быстрого внесения изменений в проект и адаптации под индивидуальные потребности заказчика.
- 4. Экологичность: аддитивные технологии могут привести к снижению объёма строительных отходов, что делает процесс более экологически чистым.
- 5. Инновационные материалы: разработка новых строительных материалов, подходящих для 3D-печати, может открыть новые горизонты в архитектуре и дизайне.
- 6. Интеллектуальные системы: включение системы управления и мониторинга на основе ИТтехнологий, что улучшает управление проектом и качество конечного продукта.

Для полноценного освоения аддитивных технологий в строительстве необходимо развивать не только саму технологию, но и сопутствующие инфраструктуру, кадры, а также нормативно-правовые акты, чтобы они могли отвечать современным требованиям и обеспечить безопасность всех строительных процессов. Таким образом, аддитивное строительство имеет положительный потенциал для трансформации строительной отрасли в России и может способствовать достижению высоких стандартов качества, эффективности и устойчивости в строительстве.

Материалы и методы

Анализ и синтез данных о существующих интеллектуальных системах в области аддитивных строительных технологий представляет собой важный шаг для понимания текущего состояния и будущих направлений развития данной области. Для выполнения анализа использовались последовательные этапы и методические подходы.

Сбор информации осуществлялся из научных статей, отчётов конференций, которые освещают современные разработки и применение аддитивных технологий в строительстве, стандарты и нормативы, регулирующие аддитивные технологии и их применение в строительстве, а также методические рекомендации, описывающие лучшие практики, технологии и методы работы с аддитивными системами.

Производился анализ существующих интеллектуальных систем: CAD/CAM системы для проектирования и производства, программное обеспечение для печати, искусственный интеллект и машинное обучение.

Применён системный анализ, заключающийся в структурировании, а именно: аддитивные технологии были поделены на отдельные компоненты (материалы, процесс, оборудование, программное обеспечение) и изvчена их взаимосвязь. Системный анализ позволяет не только проанализировать текущее состояние аддитивных технологий в строительстве, но и указать на направления для дальнейшего развития и улучшения.

Результаты

В строительной отрасли при возведении зданий и сооружений одним из перспективных направлений является 3D-печать строительных конструкций и непосредственно зданий, основные преимущества аддитивной технологии - это значительное сокращение времени на производство строительных работ при задействовании меньшего количества необходимого персонала и сокращении затрат на материалы [1]. Существует три принципиальные технологии 3D-печати, все из которых были разработаны зарубежными учёными.

Первой из них является стереолитография (SLA), патент на которую был получен Чаком Халлом в 1986 году. Его изобретение позволило существенно сократить время создания пластиковых прототипов: вместо многонедельного ожидания теперь процесс можно было завершить всего за один день. Стереолитография основана на полимеризации в светочувствительной жидкой смоле. В процессе используются цифровые поперечные сечения, которые передаются в стереолитографическую машину, состоящую из рабочей платформы и лазерного светового излучателя. Под ультрафиолетовым лазером застывает жидкий полимер, что и делает эту технологию первой аддитивной производственной технологией.

В это же время, в 1980-х годах, Карл Декард в Техасском университете в Остине работал над другой технологией аддитивного производства – селективным лазерным спеканием (SLS). Вместе с профессором Джо Биманом он разработал метод, при котором лазер преобразует сыпучий порошок в твёрдый материал. В 1987 году они основали компанию Desk Top Manufacturing (DTM) Corporation,

а в 1989 году Декард получил патент на селективное ла-

СТРОИТЕЛЬНОЕ ПРОИЗВОДСТВО № 4 (52)'2024

зерное спекание полимерных материалов. Тем не менее, потребовалось ещё 20 лет, прежде чем эта технология стала коммерчески доступной для потребителей.

Третьим способом 3D-печати является технология послойного наплавления (FDM), впервые разработанная Скоттом Крампом в 1988 году. Этот метод подразумевает подачу материала путём выдавливания, что сделало его более простым и дешёвым вариантом 3D-печати. FDM стал основой для аддитивных технологий в строительстве и был коммерциализирован компанией Stratasys.

Рис. 1. Типы строительных 3D-принтеров: а) портальный принтер, б) принтер типа «дельта», в) роботизированный принтер

Fig. 1. Types of construction 3D printers: a) portal printer, b) delta printer, c) robotic printer

Рис. 2. Иерархическая модель интеллектуальных систем в аддитивных строительных технологиях

Fig. 2. Hierarchical model of intelligent systems in additive construction technologies

Таким образом, каждая из этих технологий сыграла важную роль в развитии 3D-печати, но все они имеют свои корни за пределами России.

На сегодняшний день в мире насчитывается более 50 компаний, которые занимаются внедрением аддитивных технологий в строительную отрасль. Они занимаются разработкой новых моделей и конструкций 3D-принтеров, программного обеспечения для их работы, строительных смесей для 3D-печати, строительством зданий и сооружений.

Технические интеллектуальные системы представляют собой устройства, способные не только выполнять рутинные задачи, но и адаптироваться к изменяющимся условиям и требованиям. В контексте аддитивного строительства 3D-принтеры могут адаптироваться под различные материалы, конструкции и спецификации заказов. Их основная цель — создание полезного эффекта, который может значительно улучшить качество жизни человека, оптимизировать производственные процессы и повысить безопасность [2—4]. Такими системами в строительной аддитивной технологии являются 3D-принтеры, которые развиваются довольно быстрыми темпами. Выделяют следующие типы технических интеллектуальных систем (строительных 3D-принтеров): портальные, принтеры типа «дельта» и роботизированные.

Основным отечественным производителем оборудования для 3D-печати строительных конструкций, зданий и сооружений является компания АМТ-СПЕЦАВИА. На данный момент линейка производимых компанией АМТ строительных 3D-принтеров составляет 6 моделей: S-300, S-500 (для работы на строительной площадке); S-3030, S-6044, S-6044 LONG, S-6045M (для работы в цехе).

Все типы строительных 3D-принтеров наделены программными интеллектуальными системами. В последние несколько лет 3D-печать приобретает всё большее значение в производственных процессах по той причине, что она позволяет изготавливать сложные большие конструкции с помощью компьютерного проектирования (САПР). Используя компьютерное моделирование в конструкции домов, можно заложить разъёмы под изоляцию, трубопровод, электропроводку и оконные блоки. Все эти элементы устанавливаются после завершения 3D-печати [5—7].

В результате изучения и анализа материалов построена иерархическая модель интеллектуальных систем в аддитивных строительных технологиях (рисунок 2). Интеллектуальная система аддитивной технологии в строительстве — это не только применение передовых строительных материалов для 3D-печати и 3D-принтеров, но и сопровождающего САПР. Основой строительного производства, строительной технологии являются нормативно-правовые и нормативно-технические документы, регулирующие деятельность. Если с нормативно-правовыми документами всё понятно, они едины и не изменяемы на всей территории РФ, то нормативно-техническая база требует совершенствования для удовлетворения потребностей государства и иных заказчиков в современной продукции аддитивного производства [8; 9].

Создание стандартов для 3D-печати в строительстве необходимо для обеспечения безопасности и долговечности изделий. Отсутствие универсальных критериев приводит к рискам, связанным с квалификацией и надёжностью материалов. Потребители должны быть уверены в том, что изделия, изготовленные с использованием аддитивных технологий, соответствуют современным требованиям

Организации, занимающиеся стандартизацией, должны активно сотрудничать с производителями и исследовательскими учреждениями для создания адаптивной системы стандартов, которая будет учитывать специфику аддитивных технологий. Такие усилия помогут не только повысить конкурентоспособность продукции, но и продвигать инновации в строительной отрасли, что, в свою очередь, приведёт к более эффективному использованию ресурсов и сокращению затрат [10].

На основе вышеизложенного можно выделить факторы, которые непосредственно влияют на развитие аддитивного строительного производства и, в частности, на развитие аддитивных технологий (рисунок 3).

Показатель, который даст возможность оценить наличие задействованных интеллектуальных систем в аддитивном строительстве, — это процентное соотношение применяемых интеллектуальных систем в технологических процессах аддитивного производства:

$$p_{AT} = \frac{a_H}{a_{II}} \times 100\%,$$

Рис. 3. Факторы, влияющие на развитие аддитивного строительного производства **Fig. 3.** Factors influencing the development of additive

Fig. 3. Factors influencing the development of additive construction production

СТРОИТЕЛЬНОЕ ПРОИЗВОДСТВО № 4 (52)'2024

где $p_{\scriptscriptstyle AT}$ — процентное соотношение применяемых интеллектуальных систем в технологических процессах аддитивного производства, %;

 $a_{_{\!\mathit{H}}}$ – число технологических процессов с применением интеллектуальных систем, ед.;

 a_{II} — число технологических процессов с применением интеллектуальных систем, ед.

Соответственно, чем ближе данное процентное соотношение к 100 %, тем более эффективнее технологические процессы аддитивного производства, поскольку преимущества автоматизации и оптимизации становятся очевидными для многих производителей работ по данной технологии. Таким образом, хотя конкретные проценты могут изменяться, очевидно, что интеграция интеллектуальных систем является критически важной для успешного функционирования современной строительной индустрии.

Заключение

Целью этого обзора было показать наличие интеллектуальных систем в строительной аддитивной технологии, указать преимущества использования аддитивного производства по сравнению с традиционным производством.

Согласно проведённому исследованию, выделены факторы, влияющие на развитие строительной аддитивной технологии: разработка единой нормативной базы, развитие технических интеллектуальных систем, оптимизация САПР, сопровождающих процессы проектирования с интеграцией 3D-печати, совершенствование и увеличение ассортимента материальной базы для строительных 3D-принтеров, обучение квалификации персонала.

Процентное соотношение применяемых интеллектуальных систем в технологических процессах аддитивного производства как показатель эффективности производства позволяет оценить, насколько эффективна данная технология аддитивного строительного производства, а соответственно, как используются ресурсы (материальные, трудовые, финансовые и др.). Процентное соотношение применяемых интеллектуальных систем как показатель эффективности производства является инструментом для оценки результативности и поиска возможностей для улучшения. Мониторинг и анализ данного показателя поможет принимать обоснованные решения и повышать конкурентоспособность строительной организации, работающей по аддитивным технологиям.

СПИСОК ЛИТЕРАТУРЫ

- Коротеев, Д. Д. Применение аддитивных технологий производства в строительстве на примере разработки 3D-модели с последующей печатью / Д. Д. Коротеев, А. И. Коренева // Системные технологии. 2021. № 2 (39). С. 21–30.
- Лапидус, А. А. Информационное моделирование зданий как фактор риска проекта / А. А. Лапидус, О. Д. Чапидзе, В. С. Ратомская // Строительное производство. – 2023. – № 3. – С. 80–87.
- Теличенко, В. И. Искусственный интеллект в технологии создания инноваций / В. И. Теличенко, М. Ю. Слесарев // Актуальные проблемы компьютерного моделирования конструкций и сооружений: Тезисы докладов VIII-го Международного симпозиума, 2023 г. Москва: МГСУ, 2023. С. 104–106.
- Теличенко, В. И. Риски интеграции технологий искусственного интеллекта в «зеленые» стандарты / В. И. Теличенко, А. А. Лапидус, М. Ю. Слесарев // Промышленное и гражданское строительство. – 2023. – № 8. – С. 102 – 108.
- 5. Ндайирагидже, И. Искусственные нейронные сети как инструмент оптимизации производственных процессов в строительстве / И. Ндайирагидже, А. А. Лапидус // Техноло-

- гия и организация строительного производства. 2018. N° 4. C. 3 6.
- Huang, J. Building energy management and forecasting using artificial intelligence: Advance technique / J. Huang, D. D. Koroteev, M. Rynkovskaya // Computers & Electrical Engineering. – 2022. – Vol. 99. – Pp. 107790.
- Legaard, C. Constructing neural network based models for simulating dynamical systems / C. Legaard, T. Schranz, G. Schweiger, J. Drgoňa // ACM Computing Surveys. – 2023. – Vol. 55. – No. 236. – Pp. 1–34.
- Кабанов, В. Н. Система документального обеспечения строительства / В. Н. Кабанов // Инженерный вестник Дона. – 2019. – № 4 (55). – С. 51.
- Gurgun, A. P. Exploring the adoption of technology against delays in construction projects / A. P. Gurgun, K. Koc, H. Kunkcu // Engineering, Construction and Architectural Management. – 2024. – Vol. 31. – No. 3. – Pp. 1222–1253.
- Cahyono, B. D. Development of a Delphi Based Ultrasonic Testing Expert System // Journal of Computer Science Advancements. – 2023. – Vol. 1. – No. 4.

REFERENCES

- Koroteev, D. D. Primenenie additivnykh tekhnologij proizvodstva v stroitel`stve na primere razrabotki 3D-modeli s posleduyushhej pechat`yu [Application of additive manufacturing technologies in construction using the example of developing a 3D model with subsequent printing] / D. D. Koroteev, A. I. Koreneva // Sistemnye tekhnologii [System technologies]. 2021. No. 2 (39). Pp. 21–30.
- Lapidus, A. A. Informatsionnoe modelirovanie zdanij kak faktor riska proekta [Building Information Modeling as a Project Risk Factor] / A. A. Lapidus, O. D. Chapidze, V. S. Ratomskaya // Stroitel`noe proizvodstvo [Construction production]. 2023. No. 3. Pp. 80 87.
- Telichenko, V. I. Iskusstvennyj intellekt v tekhnologii sozdaniya innovatsij [Artificial intelligence in innovation technology] / V. I. Telichenko, M. Yu. Slesarev // Current problems of computer modeling of structures and structures: Abstracts of the VIII International Symposium, 2023 g. [Actual problems of computer modeling of structures and structures: Abstracts of the VIII-th International Symposium, 2023]. – Moscow: MGSU, 2023. – Pp. 104–106.
- Telichenko, V. I. Riski integratsii tekhnologij iskusstvennogo intellekta v "zelenye" standarty [Risks of integrating artificial intelligence technologies into green standards] / V. I. Telichenko, A. A. Lapidus, M. Yu. Slesarev // Promyshlennoe i grazhdanskoe stroitel`stvo [Industrial and civil engineering]. – 2023. – No. 8. – Pp. 102–108.

- 5. Ndajiragidzhe, I. Iskusstvennye nejronnye seti kak instrument optimizatsii proizvodstvennykh protsessov v stroitel`stve [Artificial neural networks as a tool for optimizing production processes in construction] / I. Ndajiragidzhe, A. A. Lapidus // Tekhnologiya i organizatsiya stroitel`nogo proizvodstva [Technology and organization of construction production]. 2018. No 4. Pp. 3–6.
- 6. Huang, J. Building energy management and forecasting using artificial intelligence: advance technique / J. Huang, D. D. Koroteev, M. Rynkovskaya // Computers & Electrical Engineering. 2022. Vol. 99. Pp. 107790.
- Legaard, C. Constructing neural network based models for simulating dynamical systems / C. Legaard, T. Schranz, G. Schweiger, J. Drgoňa // ACM Computing Surveys. – 2023. – Vol. 55. – No. 236. – Pp. 1–34.
- 8. Kabanov, V. N. Sistema dokumental`nogo obespecheniya stroitel`stva [Construction documentation system] / Inzhenernyj vestnik Dona [Engineering Bulletin of the Don]. 2019. No. 4 (55). P. 51.
- Gurgun, A. P. Exploring the adoption of technology against delays in construction projects / A. P. Gurgun, K. Koc, H. Kunkcu // Engineering, Construction and Architectural Management. – 2024. – Vol. 31. – No. 3. – Pp. 1222–1253.
- Cahyono, B. D. Development of a Delphi Based Ultrasonic Testing Expert System // Journal of Computer Science Advancements. – 2023. – Vol. 1. – No. 4.

10

Исследование методов энергосбережения при проектировании быстровозводимых зданий из лёгких стальных конструкций

Research of Energy Saving Methods in the Design of Prefabricated Buildings Made of Light Steel Structures

Коротеев Дмитрий Дмитриевич

Кандидат технических наук, доцент, доцент кафедры «Технологии и организация строительного производства», ФГБОУ ВО «Национальный исследовательский Московский государственный строительный университет» (НИУ МГСУ), Россия, 129337, Москва, Ярославское шоссе, 26, KoroteevMGSU@yandex.ru

Koroteev Dmitry Dmitrievich

Candidate of Engineering Sciences, Associate Professor, Associate Professor of the Department of Technologies and Organization of Construction Production, National Research Moscow State University of Civil Engineering (NRU MGSU), Russia, 129337, Moscow, Yaroslavskoe shosse, 26, KoroteevMGSU@yandex.ru

Хуан Цзюежу

Аспирантка, кафедра технологий строительства и конструкционных материалов, ФГАОУ ВО «Российский университет дружбы народов имени Патриса Лумумбы» (РУДН), Россия, 117198, Москва, улица Миклухо-Маклая, 6, huangjueru52@qq.com

Huang Jueru

Postgraduate student of the Department of Construction Technologies and Structural Materials, Peoples' Friendship University of Russia (RUDN University), Russia, 117198, Moscow, ulitsa Miklukho-Maklaya, 6, huangjueru52@qq.com

Скуратова Инга Александровна

Студентка, кафедра металлических и деревянных конструкций, ФГБОУ ВО «Национальный исследовательский Московский государственный строительный университет» (НИУ МГСУ), Россия, 129337, Москва, Ярославское шоссе, 26, skurratova.inga@yandex.ru

12

Skuratova Inga Alexandrovna

Student of the Department of Metal and Wooden Structures, National Research Moscow State University of Civil Engineering (NRU MGSU), Russia, 129337, Moscow, Yaroslavskoe shosse, 26, skurratova.inga@yandex.ru

Аннотация. Из-за огромного количества факторов, влияющих на энергопотребление быстровозводимых зданий из лёгких стальных конструкций, нелегко объективно оценить фактические затраты энергии. Именно поэтому в статье рассмотрен метод повышения энергосбережения, основанный на усовершенствованном алгоритме роя частиц. Он моделирует многоагентную систему, где агенты-частицы двигаются к оптимальным решениям, обмениваясь при этом информацией с соседями.

Конфигурация модели энергопотребления здания строится на основе учёта теплопотерь через ограждающие конструкции, вентиляционных тепловых потерь, тепловыделения в помещениях, увеличения тепла от солнечного излучения, а также объёмов энергии, выделяемой на тепловую защиту здания.

Несущая способность здания принимается в расчётах в качестве ограничителя, поскольку она напрямую влияет на безо-

Abstract. Due to the complex factors that affect the energy consumption of prefabricated light steel structure buildings, it is difficult to effectively control the actual energy consumption of buildings. Therefore, an energy saving optimization method based on improved Particle Swarm Optimization algorithm is discusses in the article. This method models a multi-agent system where particle agents move towards optimal solutions while exchanging information with neighbors.

The configuration of the building's energy consumption model is based on the consideration of heat losses through enclosing structures, ventilation heat losses, heat generation in rooms, increased heat from solar radiation, also the volumes of energy allocated for the heat protection of the building.

In the optimization phase, the basic performance requirements of prefabricated light steel structure buildings are fully considered to ensure the structure meets the expected specifi-

пасность и целостность конструкции, а также определяет максимальную нагрузку, которую здание может выдержать без риска обрушения или повреждения. На этапе поиска устанавливается механизм сближения частиц для скорости перемещения. После этого применяется алгоритм роя частиц, который задаёт диапазон их поиска с нормальным распределением, чтобы выявить параметры тех факторов, которые отвечают требованиям проектирования энергосберегающего здания. Полученные результаты свидетельствуют о применимости данного метода для повышения энергоэффективности быстровозводимых зданий при их проектировании.

Ключевые слова: быстровозводимые здания, лёгкие стальные конструкции, энергосбережение, усовершенствованный алгоритм роя частиц.

cations and regulations. The bearing capacity of the building is taken as a constraint, because it directly affects the safety and integrity of the structure, as well as determines the maximum load that the building can withstand without the risk of collapse or damage. And the convergence mechanism is set for the movement speed of particles in the search phase. After that, the PSO algorithm is used to set the search range of particles in the normal distribution way to determine the influencing factor parameters that meet the requirements of energy conservation design. The obtained results indicate the applicability of this method to increase the energy efficiency of prefabricated buildings during their design.

Keywords: prefabricated buildings, fabricated light steel structure, energy saving, improved Particle Swarm Optimization algorithm.

Введение

Строительство является сложным и дорогостоящим процессом, поэтому в большинстве случаев заказчики стремятся его ускорить и удешевить, в связи с этим быстровозводимые здания являются привлекательным решением для многих задач [1]. Они находят применение в различных областях благодаря скорости монтажа и вариативности [2]. Быстровозводимые здания используются при возведении временных объектов различного назначения, например, медицинских модулей в случае эпидемий, коммерческих помещений при проведении выставок и конференций, жилых помещений в случае необходимости предоставления укрытия для пострадавших от стихийных бедствий или военных действий, при пионерном освоении новых территорий вне развитой инфраструктуры [3]. Также такие здания применяются для промышленных производств, при создании комплексов складов, цехов, для возведения амбаров, зернохранилищ, скотоводческих хозяйств в аграрной и животноводческой отраслях [4].

Быстровозводимые здания строят из различных материалов, в том числе из металлоконструкций, лёгких бетонных блоков, пластика и дерева. Но именно сооружения из лёгких стальных сборных конструкций лучше всего обеспечивают устойчивость и долговечность зданий [5]. При этом современные методы обработки, такие как оцинковка и нанесение антикоррозийных покрытий, значительно увеличивают срок службы металлоконструкций, защищая их от коррозии и повышая адаптивность под различные требования и условия [6].

С учётом постоянного роста стоимости энергоносителей и конечности энергоресурсов, обеспечение минимальных тепловых потерь и создание оптимального микроклимата в любое время года при проектировании зданий имеет большое практическое значение [7]. Из-за таких особенностей, как высокая теплопроводность стали, приводящая к образованию температурного моста, неполная герметичность стыков и соединений, случающаяся во время сборки каркаса, вопрос проектирования энергоэффективного здания из стального металлического каркаса становится особо острым [8].

Важно отметить, что лёгкие стальные конструкции, обладающие малым весом и высокой прочностью, способны уменьшить потери в материалах при строительстве, что напрямую касается главной концепции проектирования экологичных энергосберегающих зданий [9]. Кроме того, лёгкие стальные конструкции разбираются и перерабатываются без особых усилий, что способствует сокращению количества строительных отходов, а также вторичному использованию ресурсов [10].

В процессе проектирования необходимо в полной мере учитывать теплоизоляцию и вентиляцию здания, а также способность сохранять тепло в помещениях. С точки зрения проектирования, оптимизация конструкции путём сокращения количества строительных материалов также уменьшает энергопотребление. Благодаря созданию рациональной планировки и использованию цифровых технологий в строительстве, функциональные требования здания могут быть реализованы без вреда для окружающей среды [11].

Очень важно для экономии ресурсов проводить мониторинг энергоэффективности здания как на момент про-

СТРОИТЕЛЬНОЕ ПРОИЗВОДСТВО № 4 (52)'2024

ектирования, так и в период эксплуатации [12]. Для этого созданы различные способы оценивания эффективности зданий с точки зрения энергосбережения [13].

Целью настоящей статьи является исследование методов повышения энергоэффективности при проектировании быстровозводимых зданий из металлических конструкций, в том числе метода, основанного на усовершенствованном алгоритме роя частиц.

Объектом исследования являются быстровозводимые здания из металлических конструкций. Предметом исследования являются методы повышения энергоэффективности при проектировании быстровозводимых зданий.

Материалы и методы

В настоящей статье энергопотребление анализируется с точки зрения теплопотерь через ограждающие конструкции, вентиляционных тепловых потерь за счёт проницаемости через вентиляционное оборудование и конструкции в целом, тепловыделения в помещениях в процессе эксплуатации, увеличения тепла от солнечного излучения в дневное время суток, а также объёмов энергии, выделяемой на тепловую защиту здания. Все эти составляющие приводят к определённым тепловым потерям из-за свойств материалов, способов их соединения, точности конструкций. Значительная доля от общих теплопотерь приходится на окна и двери [14].

Проницаемость тепла через вентиляцию в основном зависит от самого вентиляционного оборудования и от его герметичности. Вентиляционное оборудование, как электрический прибор, расходует определённое количество энергии ежедневно в процессе эксплуатации, в то время как плохая герметичность приводит к проникновению уличного воздуха внутрь помещения, тем самым увеличивая объём потребляемой энергии.

Что касается внутреннего тепловыделения, то оно возникает в результате деятельности персонала внутри здания, также в результате работы оборудования. Чтобы поддерживать тепловой режим внутри здания, необходимо использовать системы кондиционирования, вентиляции и другое оборудование, что увеличивает энергопотребление в пелом.

Нагрев от солнечного излучения поступает в здание через окна. Это приводит к повышению температуры в помещении, что увеличивает рабочую нагрузку на кондиционеры, тем самым нарастает потребление энергии.

Таким образом, формула энергопотребления во время эксплуатации быстровозводимых зданий имеет вид:

$$Q = Q_T + Q_V - Q_I - Q_C, \tag{1}$$

где Q — суммарный расход энергии зданием,

 $Q_{\scriptscriptstyle T}$ – тепловые потери через ограждающие конструкции,

 $Q_{\scriptscriptstyle V}$ – вентиляционные тепловые потери,

 Q_{1} — внутреннее тепловыделение,

13

 $Q_{\rm s}$ – тепловыделения от солнечного излучения.

Данная формула сочетает в себе все факторы, влияющие на энергопотребление. Результаты проведённого анализа факторов, влияющих на энергопотребление зданий из сборных лёгких стальных конструкций, приведены в таблице 1.

Понимая влияние всех факторов, приведённых в таблице 1, немаловажно уметь их правильно учитывать при проектировании. Преобразуем формулу 1, уточнив данные в таблице 1 параметры:

Табл. 1. Анализ факторов, влияющих на энергопотребление зданий из сборных лёгких стальных конструкций **Таb. 1.** Analysis of factors affecting energy consumption of assembled lightweight steel buildings

$$Q = \sum k_t x_t + \sum \lambda_i v_i - \sum nq_i - \sum sq_s,$$
 (2)

где k_{\star} – коэффициент энергопотребления здания,

 x_t — коэффициент, характеризующий выбранные материалы,

 λ — коэффициент энергопотребления вентиляцией,

 v_{j}^{\prime} — коэффициент, характеризующий эффективность вентиляции,

n — коэффициент, указывающий на проектную мощность здания,

 q_i — коэффициент, показывающий выработку тепла на 1 человека,

s — коэффициент, указывающий на эффективную площадь теплового воздействия,

 q_s — коэффициент, указывающий на общее количество теплового излучения на единицу площади.

Данная формула включает в себя необходимые факторы, влияющие на энергоэффективность быстровозводимого здания.

При проектировании объекта, целью которого является максимальное энергосбережение, необходимо учитывать также несущую способность здания, которая будет выполнять функцию ограничителя. Это выражается следующим образом:

$$\varepsilon = \int \frac{dl}{l} = \ln\left(\frac{l}{l_0}\right) \le \varepsilon_{nom},\tag{3}$$

где ε — обозначение деформаций от нагрузок стальной конструкции,

 ε_{nom} — предельная нагрузка,

l — длина конструкции,

 l_0 — начальная длина стальной конструкции.

Таким образом, задача оптимизации энергосбережения здания трансформируется в задачу получения минимального значения энергопотребления, представленного выражением (2), при выполнении условия (3).

Для дальнейшего решения задачи оптимизации энергосбережения быстровозводимого здания из лёгких металлических конструкций был выбран метод, основанный на использовании усовершенствованного алгоритма роя частиц, учитывающий все факторы, отражающиеся в виде тех самых частиц. Алгоритм роя частиц (Particle Swarm Optimization, PSO-алгоритм) — это метод числен-

ной оптимизации, для использования которого не требуется знать точного градиента оптимизируемой функции. Он моделирует многоагентную систему, где агенты-частицы двигаются к оптимальным решениям, обмениваясь при этом информацией с соседями [15].

Данный алгоритм оптимизации выражается следующим образом:

$$v(t) = Nv(t-1) + r_{i}(a_{i} - a_{i-1}), \tag{4}$$

где v(t) — скорость перемещения частицы на этапе поиска, N — количество частиц,

 $r_{\scriptscriptstyle i}$ – коэффициент рассредоточения в фазе поиска,

 a_i и a_{i-1} — положение частиц в предыдущий и текущий моменты поиска соответственно.

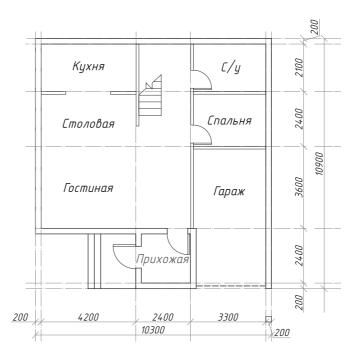
Чтобы избежать влияния локального оптимума на конечные результаты, устанавливается механизм сходимости скорости перемещения частицы на этапе поиска, это улучшает способность частицы к поиску в заданном диапазоне [15].

Таким образом, диапазон поиска частиц устанавливается с помощью нормального распределения, которое может быть выражено следующим образом:

$$f(a_i; \mu, \delta) = \exp\left(-\frac{(a_i - \mu)^2}{2\delta^2}\right), \tag{5}$$

где $f(a; \mu, \delta)$ — диапазон поиска частицы,

 δ — коэффициент, обозначающий отклонение положения частицы, удовлетворяющего решению задачи, по отношению к текущей позиции.


Движение частиц повторяется до тех пор, пока не будет удовлетворять функции:

$$Q = Q_{min}$$

$$s.t.\varepsilon = \int \frac{dl}{l} = \ln\left(\frac{l}{l_0}\right) \le \varepsilon_{nom},$$
 (6)

где Q_{\min} — минимальное значение энергопотребления здания из лёгких стальных конструкций.

Когда конечный результат удовлетворяет уравнению (6) или же больше не изменяется с увеличением числа итераций, параметры влияющего показателя, соответствующие позициям частиц, принимаются в качестве окончательных результатов. Именно таким образом до-

Рис. 1. План первого этажа здания **Fig. 1.** Plan of the construction project

стигается оптимальное по показателям энергосбережения объёмно-планировочное и конструктивное решение злания.

Результаты и их обсуждение

Для оценки эффективности выбранного метода повышения энергосбережения выполнено моделирование энергопотребления 2-этажным зданием площадью 185,6 м². Здание спроектировано из металлоконструкций, в качестве стеновых панелей выбраны сэндвич-панели. На рисунке 1 представлен план первого этажа здания.

Помещения с высокими требованиями к обогреву, такие как гостиная и спальня, находятся на солнечных сторонах, чтобы в полной мере использовалось естественное освещение и тепло. Кухня и санузел расположены на северной стороне. Входная группа расположена с южной стороны. Такое объёмно-планировочное решение обеспечивает сохранение тепла зимой, а летом — буферную зону между горячим уличным воздухом и прохладой помещения.

Для оценки эффективности использования метода роя частиц при проектировании, энергопотребление рассматриваемого здания также было смоделировано по методикам, описанным в работах [16–17]. В работе [16] предложен метод проектирования сборных стеновых панелей, основанный на создании состязательной нейронной сети.

Методы	Потребление энергии, Вт/м²						
	Индекс тепловой нагрузки в отопительный сезон	Индекс холодной нагрузки при кондиционировании воздуха					
Метод, описанный в работе [16]	22,11	11,49					
Метод, описанный в работе [17]	24,27	10,41					
Метод, изложенный в данной статье	17,61	9,41					

Табл. 2. Результаты испытаний различных методик **Tab. 2.** Test results of different methods

СТРОИТЕЛЬНОЕ ПРОИЗВОДСТВО № 4 (52)'2024

Рис. 2. Гистограмма по результатам испытаний различных методик

Fig. 2. Comparison of test results of different methods

Применяя данный метод, авторам удалось достичь более эффективного и точного расположения конструкций и узлов здания, что прямым образом влияет на его энергопотребление. Однако данный метод имеет ряд недостатков, связанных с необходимостью большого объёма данных и времени для обучения нейронной сети. Кроме того, этот метод может иметь ограниченные возможности для решения сложных структурных и нелинейных задач [18].

В работе [17] исследован метод, заключающийся в использовании самоцентрирующихся сборных стальных конструкций с ослаблением соединительной пластины узла примыкания с колонной. Такой метод проектирования не только помогает повысить несущую способность и сейсмостойкость здания, но и снижает материалоёмкость и энергопотребление. На практике имеются трудности в определении степени ослабления пластины, также особое внимание требует к себе узел примыкания.

Полученные результаты моделирования проанализированы по индексу тепловой нагрузки в отопительный сезон и по индексу холодной нагрузки из-за использования кондиционеров в летний период. В таблице 2 и на рисунке 2 представлены результаты проведённого анализа.

Согласно таблице 2, энергопотребление здания по методу проектирования, изложенному в данной статье, имеет самые низкие показатели. Можно сделать вывод, что исследованный в данной статье метод, основанный на использовании усовершенствованного алгоритма роя частиц для повышения энергосбережения зданий из лёгких стальных конструкций, эффективно выполняет свою функцию по снижению энергопотребления.

Заключение

В данной статье представлено исследование метода повышения энергосбережения в зданиях из лёгких стальных конструкций, основанного на усовершенствованном алгоритме роя частиц. Подражая поведению стаи птиц, ищущей себе пропитание, алгоритм для поставленной задачи нашёл оптимальные показатели энергосбережения в здании. Полученные результаты свидетельствуют о применимости метода роя частиц для повышения энергоэффективности быстровозводимых зданий при их проектировании.

В последующих научных исследованиях представляется перспективным продолжить исследования по направлению многофункциональной оптимизации на различных этапах жизненного цикла зданий, включая в рассмотрение и другие факторы, такие как экономия энергии, стоимость проектирования, сроки реализации.

СПИСОК ЛИТЕРАТУРЫ

- A novel construction scheduling framework for a mixed construction process of precast components and cast-in-place parts in prefabricated buildings / B Yang, B. Liu, J. Xiao, B. Zhang, Z. Wang, M. Dong // Journal of Building Engineering. 2021. Vol. 43, No. 103181. URL: https://doi.org/10.1016/j.jobe.2021.103181.
- 2. Prefabricated concrete sandwich and other lightweight wall panels for sustainable building construction: State-of-the-art review / T. P. Sah, A.W. Lacey, H. Hao, W. Chen // Journal of Building Engineering. 2024. Vol. 89, No. 109391. URL: https://doi.org/10.1016/j.jobe.2024.109391.
- Factors influencing construction time performance of prefabricated house building: A multi-case study / Y. Chen, D. Zhu, Z. Tian, Q. Guo // Habitat International. – 2023. – Vol. 131, No. 102731. – URL: https://doi.org/10.1016/j. habitatint.2022.102731.
- Ming, X. Materials-oriented integrated design and construction of structures in civil engineering: A review / X. Ming, J. C. Huang, Z. Li // Frontiers of Structural and Civil Engineering. 2022. – Vol. 16. – Pp. 24–44. – URL: https://doi.org/10.1007/s11709-021-0794-9.
- 5. Yang, T. Flexural performance of prefabricated composite beams with grouped bolt shear connectors under positive bending moments / T. Yang, X. Zhou, Y. Liu // Engineering Structures. 2023. Vol. 277, No. 115387. URL: https://doi.org/10.1016/j.engstruct.2022.115387.
- Preliminary analyses of an innovative solution for reducing seismic damage in steel-concrete hybrid-coupled walls / N. Ceccolini, F. Scozzese, A. Zona, A. Dall'Asta, G. Leoni, H. Degeé // Procedia Structural Integrity. – 2023. – Vol. 44. – Pp. 450– 455. – URL: https://doi.org/10.1016/j.prostr.2023.01.059.
- 7. Study on a green degree evaluation model of construction for prefabricated buildings / Z. Huo // Smart Infrastructure and Construction / Proceedings of the Institution of Civil Engineers. 2023. Vol. 177 (1). Pp. 45–55. URL: https://doi.org/10.1680/jsmic.23.00016.
- 8. Корсун, Н. Д. Применение лёгких тонкостенных конструкций как способ энергосбережения в стальном строительстве / Н. Д. Корсун, Д. А. Простакишина // Вестник гражданских инженеров. 2019. № 5 (76). С. 83–89.
- 9. Сергеев, В. Ю. Обоснование конструкции наружных стен из лёгких стальных тонкостенных конструкций исходя из обеспечения тепловой защиты зданий / В. Ю. Сергеев // Строительство: наука и образование. 2021. Т. 11, № 3. –

REFERENCES

- A novel construction scheduling framework for a mixed construction process of precast components and cast-inplace parts in prefabricated buildings / B Yang, B. Liu, J. Xiao, B. Zhang, Z. Wang, M. Dong // Journal of Building Engineering. – 2021. – Vol. 43, No. 103181. – URL: https://doi.org/10.1016/j. jobe.2021.103181.
- 2. Prefabricated concrete sandwich and other lightweight wall panels for sustainable building construction: State-of-the-art review / T. P. Sah, A. W. Lacey, H. Hao, W. Chen // Journal of Building Engineering. 2024. Vol. 89, No. 109391. URL: https://doi.org/10.1016/j.jobe.2024.109391.
- Factors influencing construction time performance of prefabricated house building: A multi-case study / Y. Chen, D. Zhu, Z. Tian, Q. Guo // Habitat International. – 2023. – Vol. 131, No. 102731. – URL: https://doi.org/10.1016/j.habitatint.2022.102731.
- 4. Ming, X. Materials-oriented integrated design and construction of structures in civil engineering: A review / X. Ming, J. C. Huang, Z. Li // Frontiers of Structural and Civil Engineering. 2022. Vol. 16. Pp. 24–44. URL: https://doi.org/10.1007/s11709-021-0794-9.
- 5. Yang, T. Flexural performance of prefabricated composite

C. 79-97.

- He,Y.Energy-oriented building renovation planning considering energy performance decay / Y. He, Y. Zhang, Y. Fan // Journal of Building Engineering. – 2024. – Vol. 86, No. 108916. – URL: https://doi.org/10.1016/j.jobe.2024.108916.
- 11. Energy Efficiency Security in Urban Areas: Challenges and Implementation / J. Huang, W. Zonghui, D. Koroteev, M. Rynkovskaya // Sustainable Cities and Society. 2024. Vol. 107, No. 105380. URL: https://doi.org/10.1016/j. scs.2024.105380.
- 12. Король, С. П. Моделирование ресурсо- и энергосбережения на стадии жизненного цикла продукта: строительство / С. П. Король, Р. А. Король // Креативная экономика. 2021. Т. 15. № 5. С. 2227–2244.
- 13. Коротеев, Д. Д. Прогнозирование энергозатрат в системах управления домашним энергопотреблением с применением метода машинного обучения / Д. Д. Коротеев, Т. А. Коротеева, Ц. Хуан // Строительство и архитектура. 2023. Т. 11, № 2 (39). С. 6.
- 14. Optimization of window solar gain for a building with less cooling load / J. Mustafa, S. Alqaed, M. Sharifpur, J. Meyer // Case Studies in Thermal Engineering. 2024. Vol. 53, No. 103890. URL: https://doi.org/10.1016/j.csite.2023.103890.
- 15. McNulty, A. A comparative study of evolutionary algorithms and particle swarm optimization approaches for constrained multi-objective optimization problems / A. McNulty, B. Ombuki-Berman, A. Engelbrecht // Swarm and Evolutionary Computation. 2024. Vol. 91, No. 101742. URL: https://doi.org/10.1016/j.swevo.2024.101742.
- Automated clash resolution for reinforcement steel design in precast concrete wall panels via generative adversarial network and reinforcement learning / P. Liu, H. Qi, J. Liu, L. Feng, D. Li, J. Guo // Advanced Engineering Informatics. – 2023. – Vol. 58, No. 102131. – URL: https://doi.org/10.1016/j. aei.2023.102131.
- 17. Cyclic loading tests of self-centering prestressed prefabricated steel beam-column joint with weakened FCP / Z. Jiang, M. Chen, Z. Yang, X. Li, C. Cai // Engineering Structures. 2022. Vol. 252, No. 113578. URL: https://doi.org/10.1016/j.engstruct.2021.113578.
- 18. Waqas, A. Machine learning-aided thermography for autonomous heat loss detection in buildings / A. Waqas, M. T. Araji // Energy Conversion and Management. 2024. Vol. 304, No. 118243. URL: https://doi.org/10.1016/j.enconman.2024.118243.
- beams with grouped bolt shear connectors under positive bending moments / T. Yang, X. Zhou, Y. Liu // Engineering Structures. 2023. Vol. 277, No. 115387. URL: https://doi.org/10.1016/j.engstruct.2022.115387.
- Preliminary analyses of an innovative solution for reducing seismic damage in steel-concrete hybrid-coupled walls / N. Ceccolini, F. Scozzese, A. Zona, A. Dall'Asta, G. Leoni, H. Degeé // Procedia Structural Integrity. – 2023. – Vol. 44. – Pp. 450– 455. – URL: https://doi.org/10.1016/j.prostr.2023.01.059.
- 7. Huo, Z. Study on a green degree evaluation model of construction for prefabricated buildings / Z. Huo // Smart Infrastructure and Construction / Proceedings of the Institution of Civil Engineers. 2023. Vol. 177 (1). Pp. 45–55. URL: https://doi.org/10.1680/jsmic.23.00016.
- 8. Korsun, N. D. Primenenie legkikh tonkostennykh konstruktsij kak sposob ehnergosberezheniya v stal`nom stroitel`stve [The use of lightweight thin-walled structures as a method of energy saving in steel construction] / N. D. Korsun, D. A. Prostakishina // Vestnik grazhdanskikh inzhenerov [Bulletin of Civil Engineers]. 2019. № 5 (76). Pp. 83–89.
- Sergeev, V. Yu. Obosnovanie konstruktsii naruzhnykh sten iz legkikh stal`nykh tonkostennykh konstruktsij iskhodya iz obespecheniya teplovoj zashhity zdanij [Justification of ex-

ternal wall construction using lightweight steel thin-walled structures based on the provision of thermal protection for buildings] / V. Yu. Sergeev // Stroitel`stvo: nauka i obrazovanie [Construction: science and education]. – 2021. – Vol. 11, No. 3. – Pp. 79–97.

- 10. He, Y. Energy-oriented building renovation planning considering energy performance decay / Y. He, Y. Zhang, Y. Fan // Journal of Building Engineering. 2024. Vol. 86, No. 108916. URL: https://doi.org/10.1016/j.jobe.2024.108916.
- Energy Efficiency Security in Urban Areas: Challenges and Implementation / J. Huang, W. Zonghui, D. Koroteev, M. Rynkovskaya // Sustainable Cities and Society. – 2024. – Vol. 107, No. 105380. – URL: https://doi.org/10.1016/j.scs.2024.105380.
- 12. Korol', S. P. Modelirovanie resurso- i ehnergosberezheniya na stadii zhiznennogo tsikla produkta: stroitel'stvo [Modeling resource and energy savings at the product life cycle stage: construction] / S. P. Korol', R. A. Korol' // Kreativnaya ehkonomika [Creative economy]. 2021. Vol. 15, No. 5. Pp. 2227–2244.
- 13. Koroteev, D. D. Prognozirovanie ehnergozatrat v sistemakh upravleniya domashnim ehnergopotrebleniem s primeneniem metoda mashinnogo obucheniya [Forecasting energy consumption in home energy management systems using machine learning methods] / D. D. Koroteev, T. A. Koroteeva, J. Huang // Stroitel`stvo i arkhitektura [Construction and architecture]. 2023. Vol. 11, No. 2 (39). P. 6.
- 14. Optimization of window solar gain for a building with less

- СТРОИТЕЛЬНОЕ ПРОИЗВОДСТВО № 4 (52)'2024
- cooling load / J. Mustafa, S. Alqaed, M. Sharifpur, J. Meyer // Case Studies in Thermal Engineering. 2024. Vol. 53, No. 103890. URL: https://doi.org/10.1016/j.csite.2023.103890.
- 15. McNulty, A. A comparative study of evolutionary algorithms and particle swarm optimization approaches for constrained multi-objective optimization problems / A. McNulty, B. Ombuki-Berman, A. Engelbrecht // Swarm and Evolutionary Computation. 2024. Vol. 91, No. 101742. URL: https://doi.org/10.1016/j.swevo.2024.101742.
- Automated clash resolution for reinforcement steel design in precast concrete wall panels via generative adversarial network and reinforcement learning / P. Liu, H. Qi, J. Liu, L. Feng, D. Li, J. Guo // Advanced Engineering Informatics. – 2023. – Vol. 58, No. 102131. – URL: https://doi.org/10.1016/j. aei.2023.102131.
- 17. Cyclic loading tests of self-centering prestressed prefabricated steel beam-column joint with weakened FCP / Z. Jiang, M. Chen, Z. Yang, X. Li, C. Cai // Engineering Structures. 2022. Vol. 252, No. 113578. URL: https://doi.org/10.1016/j.engstruct.2021.113578.
- 18. Waqas, A. Machine learning-aided thermography for autonomous heat loss detection in buildings / A. Waqas, M. T. Araji // Energy Conversion and Management. 2024. Vol. 304, No. 118243. URL: https://doi.org/10.1016/j.enconman.2024.118243.

УДК 004.94 DOI: 10.54950/26585340_2024_4_17

Концептуальная модель системы управления цифровыми двойниками проекта строительства из крупногабаритных железобетонных модулей на основе больших языковых моделей

Conceptual Model of a Digital Twin Management System for a Construction Project from Large-Sized Reinforced Concrete Modules Based on Large Language Models

Амбарцумян Сергей Александрович

Доктор технических наук, профессор, профессор кафедры «Технологии и организация строительного производства», ФГБОУ ВО «Национальный исследовательский Московский государственный строительный университет» (НИУ МГСУ), Россия, 129337, Москва, Ярославское шоссе, 26

Ambartsumyan Sergey Alexandrovich

Doctor of Technical Sciences, Professor, Professor of the Department of Technologies and Organization of Construction Production, National Research Moscow State University of Civil Engineering (NRU MGSU), Russia, 129337, Moscow, Yaroslavskoe shosse, 26

Мочалин Дмитрий Евгеньевич

Аспирант кафедры «Технологии и организация строительного производства», ФГБОУ ВО «Национальный исследовательский Московский государственный строительный университет» (НИУ МГСУ), Россия, 129337, Москва, Ярославское шоссе, 26, dm.mochalin@mail.ru

Mochalin Dmitry Evgenievich

Postgraduate student of the Department of Technologies and Organization Construction Production, National Research Moscow State University of Civil Engineering (NRU MGSU), Russia, 129337, Moscow, Yaroslavskoe shosse, 26, dm.mochalin@mail.ru

Аннотация. Высокий рост уровня строительства обуславливается быстрыми темпами развития различных инновационных технологий. В данной статье рассматриваются перспективы и проблемы развития цифровых технологий в строительной отрасли. Разработана концептуальная модель системы управления цифровыми двойниками для проекта строительства из крупногабаритных железобетонных модулей на основе больших языковых моделей (LLM). Предложено использование многомодальной LLM с целью анализа различных типов данных и автоматизации процессов при управлении и принятии решений с использованием естественного языка. В статье проведён анализ и разработана структура моделирования цифрования цифрования цифро-

вых двойников (ЦД) на всех этапах жизненного цикла объекта строительства.

При сравнении текущего состояния применения ЦД для повышения оперативности реагирования стали очевидными существующие пробелы в полном внедрении ЦД в строительной отрасли, поэтому особое внимание в данной статье уделяется необходимости комплексного интеллектуального мониторинга и управленческих воздействий при прогнозировании аномального функционирования объектов управления и поведенческих аномалий субъектов управления на всех этапах жизненного цикла реализации строительного проекта. Предложенная модель объединяет преимущества LLM с традиционными ме-

тодами управления строительством, обеспечивая более эффективные и точные результаты.

Ключевые слова: система управления, цифровой двойник,

Abstract. The high growth of the construction industry is due to the rapid development of various innovative technologies. This article considers the prospects and problems of digital technology development in the construction industry. A conceptual model of a digital twin management system for a large-scale reinforced concrete module construction project based on large language models (LLM) is developed. The use of multimodal LLM is proposed in order to analyse different types of data and automate processes in management and decision making using natural language. The paper analyses and develops a framework for modelling digital twins at all stages of the life cycle of a construction project.

Введение

С целью повышения эффективности в строительстве требуется разработка таких моделей и алгоритмов, реализация которых позволила бы минимизировать время и затрачиваемые ресурсы на реализацию проекта с установленным критерием качества, удовлетворяющим нормативным требованиям. Для решения данной задачи ещё на этапе проектирования осуществляется создание цифровых моделей и проведение имитационного моделирования с целью получения прогнозных значений данных показателей.

Вместе с этим осуществление моделирования на этапе проектирования не даёт возможности учёта непредвиденных событий и адаптации к ним уже сформированных организационно-технических решений. Для устранения данного недостатка наиболее эффективным решением является применение цифровых двойников (ЦД) в строительной отрасли.

В ответ на глобальную пропаганду цифровизации многие отрасли промышленности активно продвигают их внедрение, однако строительная отрасль медленно внедряет цифровые технологии, отставая от таких секторов, как промышленность и медицина, где цифровизация добилась значительных успехов. Для устранения данного недостатка был проведён анализ методов моделирования для реализации ЦД в строительной отрасли применительно к зданиям, построенным из крупногабаритных железобетонных модулей (КГМ).

Материалы и методы

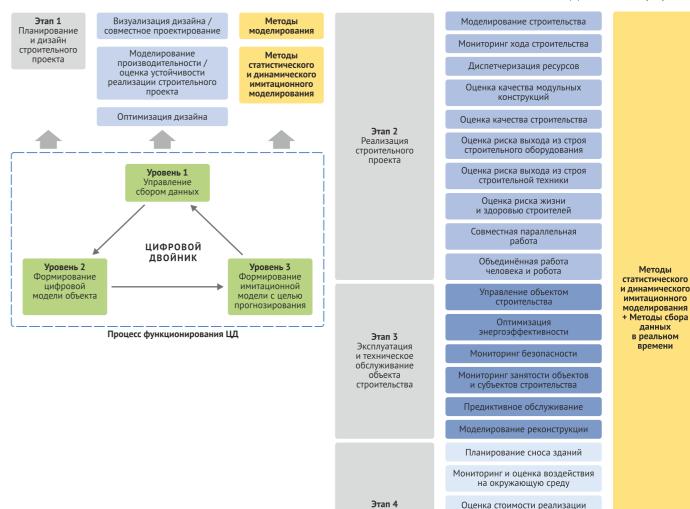
В данном исследовании использовался комплексный и систематический подход к обзору литературы за последние 4 года, в первую очередь с использованием двух основных международных баз данных Scopus и Google Scholar, ввиду того что в данных исследованиях содержится информация о проведённых экспериментах, позволяющих подтвердить результаты моделирования. Целью поиска был выбор прототипов для формирования концептуальной модели системы управления ЦД в строительной отрасли, с особым вниманием вопросам устойчивого развития и внедрения искусственного интеллекта (ИИ).

Суть ЦД заключается в разработке надёжной цифровой модели. Поэтому важнейшим шагом в построении ЦД является создание высокоточных цифровых моделей, которые точно отражают структуру объекта, характеристики материала, динамическое поведение и принципы работы. Существует два основных типа моделей ЦД: семантические модели данных и физические модели. Семантические модели данных создаются с помощью мето-

модульное строительство, искусственный интеллект, методы моделирования, большие языковые модели.

Comparing the current state of application of DD to improve responsiveness, the existing gaps in the full implementation of DD in the construction industry have become obvious, so this paper focuses on the need for integrated intelligent monitoring and management actions in predicting the abnormal functioning of control objects and behavioural anomalies of control subjects at all stages of the life cycle of a construction project. The proposed model combines the advantages of LLM with traditional construction management methods, providing more efficient and accurate results.

Keywords: control system, digital twin, modular construction, artificial intelligence, modeling methods, large language models.


дов искусственного интеллекта (ИИ) путём их обучения с использованием известных входных и выходных данных, тогда как физические модели требуют всестороннего понимания физических свойств и сложных взаимосвязей между ними [1].

Создание высокоточной геометрической модели имеет решающее значение для обеспечения точного представления геометрических аспектов в процессе реализации (визуальные атрибуты, размеры, конкретные характеристики компонентов и оборудования). Моделирование на физическом уровне идёт дальше и представляет такие характеристики, как свойства материала и механическое поведение объекта, часто с использованием программного обеспечения для анализа методом конечных элементов, такого как Midas и ANSYS [2].

Переход к моделированию на уровне поведения, анализ физических моделей и включение временной информации позволяют собирать данные в реальном времени. Это облегчает наблюдение за изменениями свойств материала и механического поведения в пространстве и времени. Для создания дополненной реальности (AR) при взаимодействии с ЦД авторы в [3] предлагают использовать такие инструменты, как Unity и Unreal Engine. Дополненная реальность способствует визуализации при работе с ЦД.

При моделировании на уровне правил рабочие характеристики механических компонентов и условия эксплуатации оборудования точно контролируются на основе национальных стандартов и спецификаций.

Чтобы точно оценить двустороннее взаимодействие с физическим объектом, авторы в [4] разработали имитационную модель на основе метода конечных элементов. Построение такой модели для ЦД включает в себя сложную архитектуру с множеством компонентов, что создаёт проблемы на различных этапах построения модели. В нашей стране довольно успешно используется среда моделирования COMSOL Multiphysics для моделирования разнообразных физических и технологических процессов, однако для моделирования зданий данный программный продукт ещё не применялся. В реальной системе ЦД на начальном этапе её формирования обычно используется моделирование на основе метода Монте-Карло для оценки эффективности вариантов возможных действий в различных условиях и создания комплексной базы данных, позволяющей принимать обоснованные решения. Всестороннее изучение приложений ЦД и ключевых сопутствующих цифровых технологий моделирования привело к разработке структуры моделирования ЦД (рисунок 1).

Puc. 1. Структура моделирования ЦД **Fig. 1.** A modeling framework for digital twin

Снос

и реконструкция

объекта

строительства

Этапы жизненного

цикла строительства

На первом этапе процесса внедрения ЦД собираются данные в реальном времени от физических объектов. При переходе к этапу 2 внедряются технологии высокоточного моделирования, помогающие создать визуальную модель на основе данных, полученных из ЦД. На этапе 3 технологии моделирования на основе ЦД позволяют реализовать ряд функций оценки и прогнозирования. Примечательно, что данные в реальном времени не просто передаются последовательно через данные этапы — они также передаются обратно физическим объектам после прохождения ряда процессов моделирования.

После тщательного изучения всего жизненного цикла зданий были всесторонне синтезированы потенциальные возможности применения ЦД в строительной отрасли. При сравнении текущего состояния применения ЦД для повышения оперативности реагирования стали очевидными существующие пробелы в полном внедрении ЦД в строительной отрасли. На рисунке 1 используются разные оттенки для отображения частоты применения ЦД в разных категориях, причём более тёмные цвета указывают на более частое использование. Примечательно, что при-

менения ЦД в разных сценариях не имеют существенной корреляции даже в пределах одной и той же фазы жизненного цикла, поскольку текущие исследования преимущественно сосредоточены на отдельных сценариях применения. Исходя из этого, требуется комплексное внедрение ЦД по нескольким сценариям. С этой целью была разработана концептуальная модель ЦД проекта строительства из КГМ.

Управление безопасностью

в процессе сноса здания

Планирование реконструкции объекта строительства

Способы применения

Цифровые

Концептуальная модель системы управления ЦД проекта строительства из КГМ

Рассмотрим предлагаемую концептуальную модель внедрения ЦД. Данная модель отражает процесс применения ЦД по ключевым элементам проектов, начиная с физических элементов и цифровых моделей и заканчивая корректировкой управленческих решений (рисунок 2). Предлагаемая структура, начиная с этапа подготовки, образует основу системы управления ЦД.

Этап реализации включает в себя сбор, хранение, интеграцию, обработку и анализ данных, что представляет собой наиболее важный компонент системы ЦД.

Рис. 2. Концептуальная модель системы управления ЦД в строительной отрасли

Fig. 2. A conceptual model of a digital twin management system in the construction industry

На этапе подготовки заранее проектируют цифровые модели будущего здания, оборудования для создания КГМ, строительной техники, транспорта и логистических путей доставки грузов, по существу создавая виртуальные модели соответствующего физического оборудования на основе конкретного проекта.

Отображение

На этапе развёртывания основное внимание уделяется операциям, связанным с данными. Поскольку основной целью проекта является устойчивое развитие, основной целью сбора данных должна быть оценка:

- 1) состояния оборудования для формирования КГМ,
- 2) состояния строительной техники,

Интерактивный

интерфейс

геопозиционирования

- 3) готовности строительной площадки и подъездных
- 4) готовности транспорта и путей доставки КГМ,
- 5) наличия строительных бригад и их укомплектован-
- 6) состояния оборудования на строительной площад-

На этапе эксплуатации важным звеном является платформа визуализации. Объединив виртуальные модели, необработанные или предварительно обработанные данные и передачу ІоТ, можно интуитивно отобразить важную информацию о текущем состоянии строительного проекта, помогая конечным пользователям понять общий статус. Более того, платформы визуализации делают понимание сложных данных и моделей более интуитивными и простыми для понимания, тем самым повышая эффективность и результативность принятия решений. Используя данные платформы, руководители проектов и другие заинтересованные стороны могут легко отслеживать проблемные точки, оценивать потенциальные риски и последствия различных мер по их устранению.

На различном оборудовании устанавливаются различные типы датчиков или устройств мониторинга для сбора соответствующих данных. Хранение, классификация, очистка и преобразование собранных данных с физических моделей производится в облачном хранилище. Анализ и обработка полученных данных производится посредством периферийных вычислений и возвращается в режиме реального времени, а посредством Интернета вещей могут быть сгенерированы базовые меры по оптимизации проекта.

Управление оборудованием

на производстве

Результаты и их обсуждение

Корректировка управленческих решений

В то же время алгоритмы оптимизации и технологии машинного обучения играют ключевую роль, анализируя исторические данные и данные в реальном времени, прогнозируя будущие тенденции, выявляя неэффективные области и предлагая стратегии по их оптимизации [5]. Таким образом, можно добиться адаптивного управления реализацией строительного проекта, а не просто осуществлять анализ отчётности постфактум. Например, интеллектуальные системы планирования [6] могут гарантировать, что строительная техника и оборудование работают в оптимальном режиме, доставка материалов и КГМ осуществляется точно и вовремя, технологический процесс строительства здания построен без простоев рабочих бригад, а интеллектуальные системы управления зданиями [7] могут автоматически регулировать потребности в отоплении и электроснабжении в зависимости от фактического использования зданий.

С целью реализации концептуальной модели предлагается сбор данных осуществлять с помощью камер, на основе которых происходит построение виртуальной 3D-модели, при этом анализ данных предлагается производить на основе искусственного интеллекта. На основе

полученных результатов анализа о текущем состоянии на строительной площадке, на производстве и в процессе доставки осуществляется формирование управленческих решений, визуализация которых реализуется в ЦД для соответствующих должностных лиц.

Распознавание и отслеживание строительной техники, обнаружение поз строителей, их местоположения, а также положения конструкций предлагается выполнять с помощью алгоритмов машинного обучения, развёрнутых в периферийных вычислительных устройствах [8]. С помощью Unity извлечённые данные в режиме реального времени преобразуются в цифровое отображение на виртуальной сцене. Действуя как цифровая тень (пока без обратной связи с физическим объектом), данная система достигает результатов, полностью продемонстрировав возможность комплексного мониторинга как строительной площадки на основе деятельности на месте, так и на линии по производству КГМ, тем самым формулируя и реализуя долгосрочные стратегии снижения ресурсных затрат в будущем.

Несмотря на активные работы на разных этапах всего жизненного цикла строительства, разработка и внедрение комплексных систем цифровых двойников в строительной отрасли остается очень ограниченной. Это связано с проблемами отраслевой практики, техническими барьерами, факторами стоимости и т. д. Сбор/обработка данных в реальном времени требует обширной интеграции датчиков, процессоров, сетей и других устройств.

Наконец, эффективное использование и преобразование полученных данных в полезную информацию требует современных аналитических инструментов и алгоритмов, что приводит нас к тому, что обучение и развёртывание моделей машинного обучения становится ключевой за-

Общеизвестно, что ИИ является ключевым методом создания мощных систем ЦД. Основная техническая проблема заключается в том, как создавать и обновлять виртуальные модели в режиме реального времени. Большинство строительных проектов являются индивидуальными, проектируются под разные условия, поэтому становится более сложным осуществлять тиражирование и обновление ЦД. Это означает, что каждый новый проект требует создания и внедрения конкретного ЦД с нуля, что, очевидно, увеличивает стоимость и сложность.

Недавно генеративный ИИ (например, большие языковые модели - Large Language Model (LLM)) был интегрирован в создание и обновление цифровых двойников с целью доставки лекарств, беспроводной связи, реконструкции 3D-моделей и т. д. Благодаря преимуществам быстрой мультимодальной обработки данных LLM демонстрирует большой потенциал для обновления системы в режиме реального времени. Однако до сих пор остаются нерешёнными вопросы о том, как разрабатывать подсказки для конкретных случаев, например, предлагать более дешёвые, но не уступающие по качествам строительные материалы, инструменты, оснастку для производства КГМ, оптимизировать параметры доставки КГМ с учётом темпа монтажа и технологической последовательности или предлагать управленческие решения в ответ на изменения условий строительства в режиме реального времени.

С целью устранения вышесказанных недостатков осуществим формальную постановку задачи повышения СТРОИТЕЛЬНОЕ ПРОИЗВОДСТВО № 4 (52)'2024

эффективности системы управления ЦД $S_{\scriptscriptstyle DT}$ за счёт внедрения интеллектуальной подсистемы мониторинга и принятия решений.

Пусть система управления ЦД $S_{\scriptscriptstyle DT}$ осуществляет управление множеством управляемых объектов $O = \{o_1, o_2, \dots, o_n\}$. Каждый о объект характеризуется множеством параметров $X_n = \{x_{n,1}, x_{n,2}, \dots, x_{n,n}\}$. Подсистема интеллектуального мониторинга и принятия решения $S_{\scriptscriptstyle AI}$ на основе модели LLM собирает данные о состоянии параметров X_{\perp} объектов О в режиме реального времени и генерирует множество токенов $T = \{t_1, t_2, ..., t_r\}$, описывающих взаимосвязи между параметрами $X_{...}$ объектов O.

Тогда требуется разработать такую интеллектуальную подсистему $S_{\scriptscriptstyle AI}$ управления строительным проектом из КГМ на основе модели LLM, которая бы реализовала та-

1. Прогнозирование изменения состояния объектов ЦД:

$$M_n = \{m_{n1}(x_{n1}), m_{n2}(x_{n2}), \dots, m_{nn}(x_{nn})\},$$

(1)

где M_n – прогнозные модели для параметров x_n объекта o_{n} при использовании множества токенов T.

2. Оценка величин отклонений в работе для каждого из объектов ЦД:

$$D_{n} = \{d_{n,l}(x_{n,l}), d_{n,l}(x_{n,l}), \dots, d_{n,n}(x_{n,n})\},$$
(2)

где D_{-} — модели оценки отклонений параметров x_{-} объекта $o_{..}$ при использовании множества токенов T.

3. Формирование оптимальных управляющих воздействий для поддержания эффективной работы о объектов на основе прогнозных значений параметров $X_{\scriptscriptstyle 0}$ от моделей M_{\parallel} и значений отклонений, полученных от моделей D_{\parallel} :

$$U_{n} = \{u_{n1}, u_{n2}, \dots, u_{nr}\},$$
 (3)

где U_{n} – модели формирования управляющих воздей-

Цель: решить задачу повышения эффективности использования системы $S_{\scriptscriptstyle DT}$ на основе разработки многомодальной модели LLM и её обучения с целью функционирования интеллектуальной подсистемы $S_{\alpha \beta}$ которая бы минимизировала временные и материальные затраты ресурсов на реализацию строительного проекта за счёт принятия своевременных управленческих решений:

$$Model_S_{AI}: U_n|T \to min, R \to min|.$$
 (4)

Заключение

Для реализации системы управления ЦД был проведён анализ методов моделирования ЦД. Анализ показал, что для реализации физических моделей целесообразно использовать метод конечных элементов и среду имитационного моделирования COMSOL Multiphysics, ввиду того что данная среда имеет большие функциональные возможности и уже применяется в нашей стране (например, на базе НИИ Московского энергетического института).

Для реализации семантических моделей наиболее эффективно применение моделей ИИ ввиду наличия нелинейных зависимостей между объектами и субъектами строительства, позволяющих осуществлять интеллектуальный мониторинг на всех этапах реализации строительного проекта и выступать в роли персонального ассистента для принятия своевременных управленческих решений с целью минимизации рисков невыполнения календарного плана строительства.

С целью реализации данных моделей в ЦД была разработана концептуальная модель их внедрения в строительной отрасли, отличающаяся от известных тем, что для реализации анализа данных различных модальностей и выработки управленческих решений применяются большие языковые модели LLM. На основе данных методов ИИ требуется разработка моделей прогнозирования изменений состояния объектов ЦД, моделей оценки отклонений параметров объектов (выявление аномалий) и моделей формирования управляющих воздействий для нивелирования данных отклонений.

СПИСОК ЛИТЕРАТУРЫ

- 1. Цифровые двойники технологических процессов в легкой промышленности / Н. Н. Губачев, Р. В. Морозов, А. А. Горский [и др.]. - DOI 10.47367/0021-3497 2022 2 334 // Известия высших учебных заведений. Технология текстильной промышленности. - 2022. - № 2 (398). - С. 334-339.
- 2. BIM Information Integration Based VR Modeling in Digital Twins in Industry 5.0 / W. Wang, H. Guo, X. Li, S. Tang, Y. Li, X. Linfu, Z. Lyu. - DOI 10.1016/j.jii.2022.100351 // Journal of Industrial Information Integration. - 2022. - Vol. 28. - Art. 100351.
- 3. Котляревская, А. В. Цифровой двойник здания как основа применения нанотехнологий в строительстве / А. В. Котляревская, К. Е. Клименко. - DOI 10.15828/2075-8545-2024-16-2-189-197 // Нанотехнологии в строительстве: научный интернет-журнал. – 2024. – Т. 16, № 2. – С. 189–197.
- 4. Development of the simulation model for Digital Twin applications in historical masonry buildings: The integration between numerical and experimental reality / G. Angjeliu, D. Coronelli, G. Cardani. - DOI 10.1016/j.

1. Tsifrovye dvojniki tekhnologicheskikh protsessov v legkoj pro-

myshlennosti [Digital twins of technological processes in light

industry] / N. N. Gubachev, R. V. Morozov, A. A. Gorskij [et al.]. -

DOI 10.47367/0021-3497_2022_2_334 // Izvestiya vysshikh

uchebnykh zavedenij. Tekhnologiya tekstil'noj promyshlen-

nosti [Izvestia of higher educational institutions. Technology

Twins in Industry 5.0 / W. Wang, H. Guo, X. Li, S. Tang, Y. Li, X. Lin-

fu, Z. Lyu. - DOI 10.1016/j.jii.2022.100351 // Journal of Indus-

trial Information Integration. - 2022. - Vol. 28. - Art. 100351.

primeneniya nanotekhnologij v stroitel`stve [Digital twin of

a building as a basis for the application of nanotechnology

in construction] / A. V. Kotlyarevskaya, K. E. Klimenko. - DOI

10.15828/2075-8545-2024-16-2-189-197 // Nanotekhnologii

v stroitel'stve: nauchnyj internet-zhurnal [Nanotechnologies

in Construction: Scientific Internet Journal]. - 2024. - Vol. 16,

cations in historical masonry buildings: The integration be-

tween numerical and experimental reality / G. Angjeliu, D. Co-

ronelli, G. Cardani. - DOI 10.1016/j.compstruc.2020.106282 //

4. Development of the simulation model for Digital Twin appli-

3. Kotlyarevskaya, A. V. Tsifrovoj dvojnik zdaniya kak osnova

of textile industry]. - 2022. - No. 2 (398). - Pp. 334-339.

2. BIM Information Integration Based VR Modeling in Digital

compstruc.2020.106282 // Computers & Structures. - 2020. -238. - Art. 106282.

- 5. Антонов, В. В. Создание, интеграция и использование цифровых двойников предприятий / В. В. Антонов // Горный журнал. - 2023. - № 10. - С. 75 - 78.
- 6. Щекочихин, О. В. Современные тенденции управления киберфизическими системами на основе цифровых двойников / О. В. Щекочихин // Информационно-экономические аспекты стандартизации и технического регулирования. -2021. - № 5 (63). - C. 33-37.
- Губанова, А. А. Цифровые двойники и мониторинг зданий / А. А. Губанова, Т. В. Цедилова // Молодые учёные – развитию Национальной технологической инициативы (ПОИСК). -2022. - № 1. - C. 150-151.
- 8. Keypoints-based Heterogeneous Graph Convolutional Networks for construction / S. Wang, L. Yang, Z. Zhang, Y. Zhao. – DOI 10.1016/j.eswa.2023.121525 // Expert Systems with Applications. - 2023. - Vol. 237, Part C. - Art. 121525.

Computers & Structures. - 2020. - 238. - Art. 106282.

- Journal]. 2023. No. 10. Pp. 75 78.
- 6. Shhekochikhin, O. V. Sovremennye tendentsii upravleniya kiberfizicheskimi sistemami na osnove tsifrovykh dvojnikov [Current trends in controlling cyber-physical systems based on digital twins] / O. V. Shhekochikhin // Informatsionnoehkonomicheskie aspekty standartizatsii i tekhnicheskogo regulirovaniya [Information and economic aspects of standardization and technical regulational]. - 2021. - No. 5 (63). -Pp. 33-37.
- Keypoints-based Heterogeneous Graph Convolutional Networks for construction / S. Wang, L. Yang, Z. Zhang, Y. Zhao. -DOI 10.1016/j.eswa.2023.121525 // Expert Systems with Ap-

Antonov, V. V. Sozdanie, integratsiya i ispol'zovanie tsifrovykh dvojnikov predprivatij [Creating, integrating and utilizing enterprise digital twins] / V. V. Antonov // Gornyj zhurnal [Mining

- Gubanova, A. A. Tsifrovye dvojniki i monitoring zdanij [Digital twins and building monitoring] / A. A. Gubanova, T. V. Cedilova // Molodye uchenye - razvitiyu Natsional`noj tekhnologicheskoj initsiativy (POISK) [Young Scientists - Development of the National Technological Initiative (SEARCH)]. - 2022. -No. 1. - Pp. 150-151.
- plications. 2023. Vol. 237, Part C. Art. 121525.

УДК 624.9

No. 2. - Pp. 189-197.

DOI: 10.54950/26585340 2024 4 22

Применение трёхгранных сечений решётчатых опор взамен четырёхгранных на примере опоры воздушной линии марки У110-4+5

Use of Triangular Cross-Section of a Lattice Pole Instead of Square Cross-Section Demonstrated on U110-4+5 OHL Support

Сабитов Линар Салихзанович

Доктор технических наук, профессор кафедры «Технологии и организация строительного производства», ФГБОУ ВО «Национальный исследовательский Московский государственный строительный университет» (НИУ МГСУ), Россия, 129337, Москва, Ярославское шоссе, 26, sabitov-kgasu@mail.ru

Sabitov Linar Salikhzanovich

Doctor of Technical Sciences, Professor of the Department of Technologies and Organization of Construction Production, National Research Moscow State Construction University of Civil Engineering (NRU MGSU), Russia, 129337, Moscow, Yaroslavskoe shosse, 26, sabitov-kgasu@mail.ru

Абдуллазянов Эдвард Юнусович

Ректор ФГБОУ ВО «Казанский государственный энергетический университет» (КГЭУ), Россия, 420066, Казань, улица Красносельская, 51

Abdullazyanov Edward Yunusovich

Rector of Kazan State Energy University (KGEU), Russia, 420066, Kazan, ulitsa Krasnoselskaya, 51

Адушкин Константин Геннадьевич

Аспирант, ФГАОУ ВО «Уральский федеральный университет имени первого Президента России Б. Н. Ельцина» (УрФУ), Россия, 620002, Екатеринбург, улица Мира, 19, 79126251270@yandex.ru

Adushkin Konstantin Gennadievich

Postgraduate student, Ural Federal University named after the First President of Russia B. N. Yeltsin (UrFU), Russia, 620002, Yekaterinburg, ulitsa Mira, 19, 79126251270@yandex.ru

Айзатуллин Марат Мансурович

Аспирант кафедры «Энергообеспечение предприятий, строительство зданий и сооружений», ФГБОУ ВО «Казанский государственный энергетический университет» (КГЭУ), Россия, 420066, Казань, улица Красносельская, 51, marat.ayzatullin@tatar.ru

Aizatullin Marat Mansurovich

Postgraduate student of the Department of Energy Supply of Enterprises, Construction of Buildings and Structures, Kazan State Energy University (KGEU), Russia, 420066, Kazan, ulitsa Krasnoselskaya, 51, marat.ayzatullin@tatar.ru

Токарева Лия Андреевна

Аспирант кафедры «Энергообеспечение предприятий, строительство зданий и сооружений», ФГБОУ ВО «Казанский государственный энергетический университет» (КГЭУ), Россия, 420066, Казань, улица Красносельская, 51, la tokareva@mail.ru

Tokareva Liya Andreevna

Postgraduate student of the Department of Energy Supply of Enterprises, Construction of Buildings and Structures, Kazan State Energy University (KGEU), Russia, 420066, Kazan, ulitsa Krasnoselskaya, 51, la tokareva@mail.ru

Аннотация. На примере существующей типовой опоры ВЛ марки У110-4+5 предлагается рассмотреть гипотезу о том, что трёхгранное сечение решётчатой опоры может обеспечить более низкую металлоёмкость относительно базового варианта с четырёхгранным сечением при сохранении требуемой надёжности и несущей способности. С помощью программного комплекса ЛИРА-САПР проверяется несущая способность опоры в базовом (четырёхгранное сечение) варианте и предлагаемом (трёхгранное сечение) варианте на сочетание нагрузок, которые предусмотрены действующими нормативными документами. Расчётным способом выдвинутая гипотеза не находит подтверждения из-за существенного увеличения сечения элементов решётки опоры вследствие действия значительных крутящих моментов при аварийных режимах эксплуатации опоры с обрывом проводов.

Продолжая исследование, автор выполняет второй эксперимент с исключением из расчётной схемы аварийных режимов, тем самым исключая появление значительных крутящих моментов. Результатом второго эксперимента становится фиксация снижения массы опоры при применении трёхгранного сечения решётчатой опоры.

СТРОИТЕЛЬНОЕ ПРОИЗВОДСТВО № 4 (52)'2024

По результатам выполненных работ делаются соответствующие выводы о нецелесообразности применения предлагаемого решения (трёхгранное сечение) для большинства опор ВЛ. В то же время делается вывод, что предлагаемое техническое решение может найти применение для других инженерных сооружений: опоры связи и освещения, анкерные опоры эстакад с прокладкой одного трубопровода и опоры для подвески баннеров, тросов и сеток. Отдельно предлагается выполнить аналогичные исследования по отношению к одностоечным, одноцепным решётчатым типовым опорам ВЛ напряжением 220-750 кВ, которые воспринимают нагрузку от одного провода, и решётчатым порталам с траверсой.

Ключевые слова: трёхгранное сечение решётчатой опоры, опора ВЛ, типовой проект, крутящий момент, металлические конструкции.

Abstract. Taking an existing standard support of a U110-4+5 OHL as an example, the article suggests considering a hypothesis that a triangular cross-section of a lattice pole can offer a lower steel intensity as compared to the existing standard basic pole with a square cross-section, keeping the existing level of reliability and bearing capacity. Using LIRA CAD software system. bearing capacity of a basic pole (square cross-section) and a proposed pole (triangular cross-section) is checked for a combination of loads that are provided for by current regulatory documents. The proposed hypothesis is not confirmed by calculation due to a marked increase in the cross-section of the elements of the lattice pole, caused by the action of significant torque moments during emergency operations with the overhead wires break.

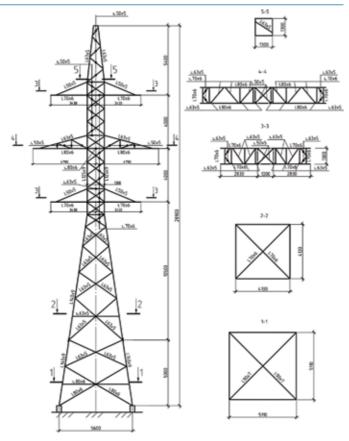
Further research offers a second experiment that excludes emergency operation from the design model, thus eliminating the appearance of significant torque moments. The second experiment results in locking the decrease of the support's weight when using the triangular cross-section lattice pole.

The results of the work performed allow drawing appropriate conclusions about the inexpediency of using the proposed solution (triangular cross-section) for the majority of OHL supports. At the same time, another conclusion of the work suggests that the proposed technical conception might be suitable for other engineering structures, such as communication and lighting supports, anchor structures of pipe racks, carrying a single pipeline, and supports, carrying banners, steel wire ropes and nets. It is also suggested that similar research should be carried out for single-column single-circuit lattice standard supports of 220-750 kV OHLs, perceiving loads from a single overhead wire, and for lattice portal structures with a support beam.

Keywords: triangular cross-section of a lattice pole, OHL support, standard series, torque moment, metal structures.

Введение

Российская Федерация (далее РФ) находится на первом месте в мире по площади территории, и огромное количество населённых пунктов и промышленных предприятий, расположенных в разных уголках страны, требует обеспечения электроэнергией для ведения своей деятельности. При этом генерирующие электроэнергию мощности зачастую располагаются в сотнях и тысячах километров от потребителей, что требует строительства большого количества высоковольтных линий (далее ВЛ) различного напряжения.


При строительстве новых линий ВЛ в современной России проектные организации в большинстве случаев используют наработки советского наследия — типовые серии и проекты. Наряду с этим лишь небольшая часть проектировщиков и учёных продолжает проводить исследования по поиску более эффективных форм с низкой металлоёмкостью для рассматриваемых сооружений — опор ВЛ [1]. Цель исследования в данной статье — рассмотреть гипотезу о том, что трёхгранное сечение решётчатой опоры ВЛ может найти своё применение в строительстве, обеспечивая более низкую металлоёмкость по сравнению с классическими четырёхгранными сечениями при сохранении требуемой надёжности и несущей способности [2].

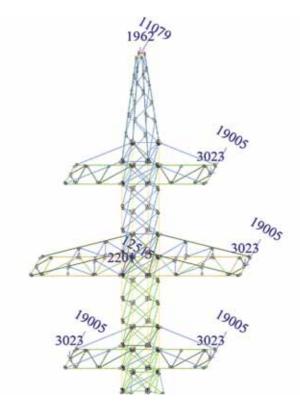
Материалы и методы

Для решения поставленной задачи автор использовал данные, полученные при обследовании существующих линий электропередач. В рамках выполненных обследований осуществлялись осмотр и обмеры опор, поиск дефектов и повреждений, проведение испытаний по определению прочностных характеристик элементов, геодезические измерения вертикальности, а также последующая проверка несущей способности металлоконструкций опор на существующие нагрузки, с соответствующим написанием технического отчёта с выводами и рекомендациями [3]. Объект исследования — стальная

Рис. 1. Рассматриваемая опора ВЛ марки У110-4+5 **Fig. 1.** A considered support U110-4+5 OHL

Рис. 2. Состав и геометрические параметры рассматриваемой опоры марки У110-4+5

Fig. 2. Composition and dimensions of a considered support of a U110-4+5 OHL


опора марки У110-4+5, выполненная по типовому проекту 3.407-68/73 (№ 3078тм-т10). Рассматриваемая опора является концевой и располагается у действующей подстанции в административных границах города Тюмень (см. рисунок 1).

Эксперимент и соответствующий расчёт несущей способности опоры выполнялся в программном комплексе ЛИРА-САПР, который имеет действующий сертификат соответствия требованиям нормативных документов РФ по проектированию и который позволяет выполнять оценку напряжённо-деформированного состояния и несущей способности строительных конструкций [4].

Результаты

Как было сказано выше, объект исследования — опора марки У110-4+5, выполненная по типовому проекту 3.407-68/73 (№ 3078тм--T10). При проведении обследования были выполнены обмеры с определением состава опоры и геометрических параметров (см. рисунок 2).

При выполнении поверочных расчётов все действующие на опору нагрузки определялись в соответствии с действующими нормативными документами: «Правила устройства электроустановок», 7 издание (далее ПУЭ 7 изд.) и СП 20.13330 «Нагрузки и воздействия». Опора располагается во II ветровом районе (500 Па), III гололёдном районе (20 мм) с региональными коэффициентами равными 1 для гололёда и ветра (ПУЭ 7 изд.). Уровень ответственности — нормальный, КС-2. Нагрузки от проводов, троса и волоконно-оптической линии связи (далее — ВОЛС) были предоставлены эксплуатирующей организацией. Расчётное направление ветра было выбрано под углом 45 градусов к грани опоры, в сторону одностороннего тяжения проводов (от подстанции).

Рис. 3. Нагрузки (H) от проводов, троса и ВОЛСа на опору в аварийном режиме с обрывом двух проводов **Fig. 3.** Loads from overhead wires, overhead protection cable and fiber-optic line acting on a support during emergency operation

with a break of two overhead wires

При расчёте было предусмотрено 8 загружений, которые моделировали 5 сочетаний нагрузок (далее РСН) [5], отражающие различные условия эксплуатации опоры в соответствии с ПУЭ 7 изд.:

PCH 1 − 1 нормальный режим – ветровой (максимальный ветер, гололёд отсутствует), ветер направлен под углом 45 градусов;

PCH 2 – 2 нормальный режим – гололёдный (гололёд, сниженный ветер), ветер направлен под углом 45 градусов;

СТРОИТЕЛЬНОЕ ПРОИЗВОДСТВО № 4 (52)'2024

PCH 3 — нормальный режим — минимальная температура (гололёд и ветер отсутствуют);

PCH 4 — аварийный режим (гололёд максимальный, ветер отсутствует), обрыв двух проводов;

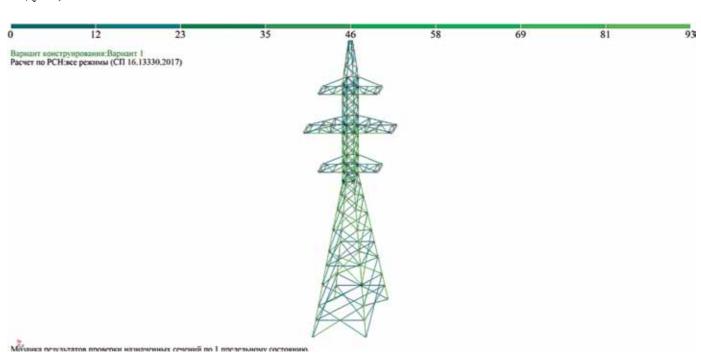
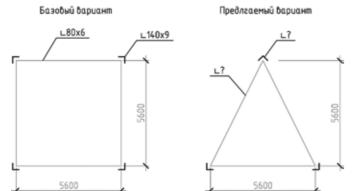
РСН 5 — аварийный режим (гололёд и ветер отсутствуют, минимальная температура), обрыв двух проводов.

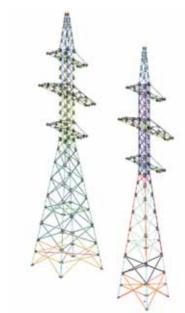
При проверке прочности и устойчивости элементов в программном комплексе ЛИРА-САПР были использованы соответствующие значения расчётных длин, гибкости, коэффициентов, условия работы и прочие параметры в соответствии с СП 16.13330 «Стальные конструкции», марка стали элементов — С245 по ГОСТ 27772. В результате проверки элементов опоры были получены значения исчерпания несущей способности по 1-й группе предельных состояний с максимальным значением — 93 % (см. рисунок 4).

После выполнения расчётов базового варианта был выполнен эксперимент с заменой четырёхгранного классического сечения опоры на трёхгранное (см. рисунки 5, 6). Для чистоты эксперимента в ходе расчётов при моделировании расчётной схемы с трёхгранным сечением опоры автор стремился подобрать сечения элементов опоры таким образом, чтобы значения исчерпания несущей способности совпадали с аналогичными значениями базовой схемы (четырёхгранное сечение), задана допустимая погрешность — до 5 %. Ввиду изменения конструктивного исполнения опоры (замена четырёхгранного поперечного сечения на трёхгранное) ветровая нагрузка, действующая на опору, подлежит изменению (уменьшение на 10 % в соответствии с п. В.9 СП 20.13330 «Нагрузки и воздействия»).

В ходе эксперимента не подвергались изменению:

- 1) габаритные размеры опоры (высота, ширина и длина);
 - 2) количество панелей решётки опоры;
 - 4) прочностные характеристики (марка стали);
 - 5) нагрузки от проводов, троса и ВОЛСа;
- 6) расчётные сочетания нагрузок;


Рис. 4. Результаты расчёта элементов опоры Fig. 4. Results of calculation of the support's elements

24

Рис. 5. Базовый и предлагаемый варианты сечения опоры (сечение в уровне основания опоры)

Fig. 5. Basic and proposed versions of the support's cross-section (cross-section at the base level of the support)

Рис. 6. Базовая и предлагаемая расчётные схемы **Fig. 6.** Basic and proposed design models

7) конструкция и размеры траверс (не выполняется оценка в рамках данной работы).

В результате итерационного процесса моделирования предлагаемого варианта с трёхгранным сечением были подобраны следующие сечения поясов и решётки: см. таблипу 1

За счёт изменения конструктивной схемы и уменьшения количества элементов опоры происходит перераспределение усилий. Ожидаемо фиксируется увеличение усилий в сжатых поясах (до 20 %) и в растянутом поясе (до 113 %), см. рисунки 7 и 8.

Соответственно, происходит увеличение сечений поясов. Также отмечается существенное увеличение сечения элементов решётки из-за учёта в расчётах аварийных режимов с обрывом проводов, которые дают значительный крутящий момент относительно вертикальной оси опоры. Крутящий момент в первую очередь воспринимают элементы решётки опоры.

Опорные реакции (в тс) от собственного веса опоры (расчётные нагрузки) в базовом варианте (четырёхгранное сечение) и в предлагаемом варианте (трёхгранное сечение) отражены в рисунке 9.

Вес опоры в базовом варианте (четырёхгранное сечение) – 5,4622 тс.

Вес опоры в предлагаемом варианте (трёхгранное сечение) – 5,8486 тс.

Итог эксперимента: увеличение веса опоры на 0,3864 тс, или на 7 %. В результате выполненных расчётов экономия в металлоёмкости не подтверждена ввиду существенного увеличения сечений решётки опоры из-за действия значительных крутящих моментов относительно вертикальной оси опоры.

Далее был проведён дополнительный эксперимент с аналогичными исходными данными и условиями за исключением того, что из расчётов были удалены загружения и сочетания нагрузок, отвечающие за аварийные режимы с обрывом проводов для исключения появления значительных крутящих моментов.

		Пояс сжатый	Пояс растянутый	Решётка 1	Решётка 2	Решётка 3
Четырёхгранное сечение	1-я секция	140×9	140×9	80×6	63×5	
	% исчерпания	76	55	35	48	
Трёхгранное сечение	1-я секция	140×10	200×14	90×9	75×6	
	% исчерпания	81	53	35	47	
Четырёхгранное сечение	2-я секция	140×9	140×9	63×5	70×6	
	% исчерпания	81	64	93	45	
Трёхгранное сечение	2-я секция	140×10	200×14	70×7	90×8	
	% исчерпания	85	63	91	46	
Четырёхгранное сечение	3-я секция	125×9	125×9	70x6	63×5	50×5
	% исчерпания	73	63	65	35	45
Трёхгранное сечение	3-я секция	140×10	200×13	90×7	90×8	75×5
	% исчерпания	69	62	68	34	44
Четырёхгранное сечение	Тросостойка	63×5	63×5	50×5		
	% исчерпания	46	17	23		
Трёхгранное сечение	Тросостойка	70×5	80×7	50×5		
	% исчерпания	42	20	23		

Табл. 1. Результат подбора сечений поясов и решётки опоры (с аварийными режимами) **Tab. 1.** The result of selecting cross-sections for chords and lattice of the support (with emergency operation modes)

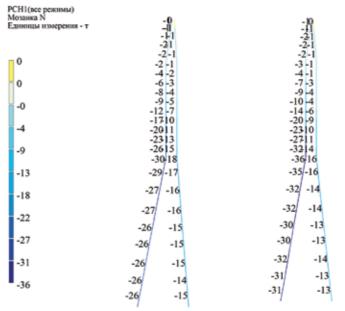


Рис. 7. Усилия (в тс) в сжатых поясах при РСН 1 в базовом варианте и в предлагаемом варианте Fig. 7. Member forces (tf) in compressed chords with

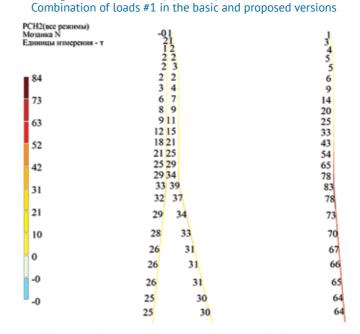
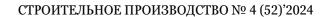



Рис. 8. Усилия (в тс) в растянутых поясах при РСН 2 в базовом варианте и в предлагаемом варианте

Біл. 9. Мотрол forces (ff) in stretched shords with Combination

Fig. 8. Member forces (tf) in stretched chords with Combination of loads #2 in the basic and proposed versions

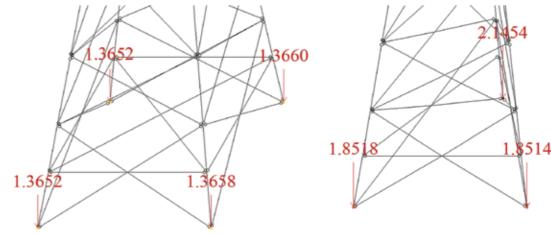
В результате расчётов были подобраны следующие сечения поясов и решётки: см. таблицу 2.

Аналогично первому эксперименту, фиксируется увеличение сечений поясов, также отмечается незначительное увеличение сечения отдельных элементов решётки.

Опорные реакции (в тс) от собственного веса опоры (расчётные нагрузки) в базовом варианте (четырёхгранное сечение) и в предлагаемом варианте (трёхгранное сечение) отражены в рисунке 10.

Вес опоры в базовом варианте (четырёхгранное сечение) – 5,4622 тс.

Вес опоры в предлагаемом варианте (трёхгранное сечение) – 5.1363 тс.


Итог второго эксперимента: уменьшение веса опоры на 0,3259 тс, или на 6,3 %. В результате выполненных расчётов экономия в металлоёмкости подтверждена.

Обсуждение

Цель исследования заключалась в рассмотрении гипотезы о том, что трёхгранное сечение решётчатой опоры ВЛ может обеспечить более низкую металлоёмкость по сравнению с классическими четырёхгранными сечениями при сохранении требуемой надёжности и несущей способности [6]. За объект исследования была принята существующая концевая типовая опора марки У110-4+5, выполненная по типовому проекту 3.407-68/73 (№ 3078тм-т10).

В результате проведённого итерационного процесса моделирования и выполненных расчётов, при условии сохранения у опоры исходной несущей способности, было зафиксировано увеличение металлоёмкости (общего веса опоры) на 7 %, в первую очередь, за счёт увеличения сечения элементов решётки опоры. Данный эффект объясняется учётом в расчётах сочетаний нагрузок, которые отвечают за аварийные режимы работы опоры ВЛ, предусмотренные нормативными документами по проектированию. Аварийные режимы предполагают обрыв проводов, что приводит к существенным крутящим моментам относительно центральной оси опоры, которые воспринимаются в первую очередь решёткой опоры.

Развивая тему исследования, был выполнен второй эксперимент с исключением из решаемой задачи аварийных режимов с сохранением прочих условий и исходных данных. Выполненные расчёты показали, что при отсутствии значительных крутящих моментов увеличение сечения элементов решётки в трёхгранном варианте практически отсутствует и сведено к минимуму, фиксируется

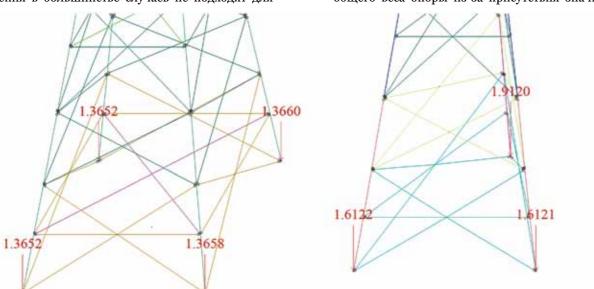
Рис. 9. Опорные реакции (в тс) от собственного веса опоры в базовом варианте и в предлагаемом варианте **Fig. 9.** Bearing reactions (tf) from the empty weight of the support in the basic and proposed versions

		Пояс сжатый	Пояс растянутый	Решётка 1	Решётка 2	Решётка 3
Четырёхгранное сечение	1-я секция	140×9	140×9	80×6	63×5	
	% исчерпания	76	55	22	27	
Трёхгранное сечение	1-я секция	140×10	200×14	80×8	63×5	
	% исчерпания	81	53	26	29	
Четырёхгранное сечение	2-я секция	140×9	140×9	63×5	70×6	
	% исчерпания	81	64	50	24	
Трёхгранное сечение	2-я секция	140×10	200×14	63×5	70×7	
	% исчерпания	86	63	50	27	
Четырёхгранное сечение	3-я секция	125×9	125×9	70×6	63×5	50×5
	% исчерпания	73	63	49	30	30
Трёхгранное сечение	3-я секция	140×10	200×14	70×7	63×5	50×6
	% исчерпания	69	58	48	30	29
Четырёхгранное сечение	Тросостойка	63×5	63×5	50×5		
	% исчерпания	46	17	23		
Трёхгранное сечение	Тросостойка	70×5	80×7	50×5		
	% исчерпания	42	20	23		

Табл. 2. Результат подбора сечений поясов и решётки опоры (без аварийных режимов) **Tab. 2.** The result of selecting cross-sections for chords and lattice of the support (without emergency operation modes)

увеличение сечения поясов опоры, что закономерно при уменьшении их количества с 4 до 3. Однако за счёт исключения из схемы элементов диафрагм жёсткости по высоте опоры и исключения 4-й грани опоры наблюдается итоговое снижение металлоёмкости опоры на 6,3 %.

Полученные результаты приводят к выводу, что трёхгранные решётчатые сечения не подходят для большинства опор ВЛ ввиду их особенности нагружения в процессе эксплуатации из-за присутствия существенных крутящих моментов. Предлагаемые трёхгранные решётчатые сечения могут найти применение в сооружениях, у которых основными расчётными усилиями являются сжатие, изгиб и поперечная сила относительно оси опоры, например: опоры связи и освещения, анкерные опоры эстакад с прокладкой одного трубопровода [7], опоры с подвеской различных материалов (баннеров, тросов, сеток и т. п.).


Хотя, как было сказано выше, трёхгранные решётчатые сечения в большинстве случаев не подходят для

опор ВЛ, предлагаемые технические решения с трёхгранным сечением опоры могут найти применение в одностоечных решётчатых одноцепных типовых опорах ВЛ напряжением 220—750 кВ, которые воспринимают нагрузку только от одного провода, что исключает появление значительных крутящих моментов в процессе эксплуатации; данная гипотеза требует подтверждения расчётным способом. Также автор считает, что дальнейшие аналогичные исследования могут быть выполнены по отношению к решётчатым порталам с траверсами [8; 9; 10; 11].

Заключение

Подводя итоги исследования, можно сделать следующие выводы:

 выполненные расчёты показали, что замена четырёхгранного решётчатого сечения на трёхгранное концевой типовой опоры ВЛ не привела к снижению металлоёмкости, зафиксировано увеличение общего веса опоры из-за присутствия значитель-

Рис. 10. Опорные реакции (в тс) от собственного веса опоры в базовом варианте и в предлагаемом варианте **Fig. 10.** Bearing reactions (tf) from the empty weight of the support in the basic and proposed versions

- ных крутящих моментов при аварийных режимах работы опоры с обрывом проводов;
- при исключении из расчётов сочетаний нагрузок, отвечающих за аварийные режимы с обрывом проводов (действие только сжимающих усилий, изгиба и поперечной силы), фиксируется снижение металлоёмкости при применении трёхгранного решётчатого сечения взамен четырёхгранного;
- соответственно, следует вывод, что четырёхгранные решётчатые опоры лучше сопротивляются крутящим моментам относительно центральной оси опоры по сравнению с опорами с трёхгранными сечениями:
- трёхгранные сечения решётчатых опор ВЛ в большинстве случаев не подходят и нецелесообразны, однако дальнейшие исследования могут быть продолжены по отношению к одностоечным решётча-

СПИСОК ЛИТЕРАТУРЫ

- Анализ напряжённо-деформированного состояния оптимальной анкерноугловой опоры воздушной линии 110 кв / А. В. Танасогло, С. Н. Бакаев, А. В. Мущанов, К. С. Бакаева // Металлические конструкции. – 2018. – Т. 24, № 1. – С. 17–28.
- 2. Напряжённо-деформированное состояние металлических конструкций сооружений электросетевого хозяйства при действии различных видов нагрузок / Э. Ю. Абдуллазянов, Л. С. Сабитов, М. М. Айзатуллин [и др.] // Инженерный вестник Дона. 2024. № 10 (118). URL: ivdon.ru/ru/magazine/archive/n10y2024/9556.
- Характерные дефекты и несовершенства строительных конструкций опор эстакад промышленных предприятий / Л. С. Сабитов, К. Г. Адушкин, Л. А. Токарева [и др.]. – DOI 10.54950/26585340_2024_3_16 // Строительное производство. – 2024. – № 3. – С. 16–26.
- 4. Напряжённо-деформированное состояние сооружений электросетевого хозяйства, расположенных в условиях Крайнего Севера / Э.Ю.Абдуллазянов, Л.С.Сабитов, М.М.Айзатуллин [и др.] // Инженерный вестник Дона. 2024. № 11 (119). URL: ivdon.ru/ru/maqazine/archive/n11y2024/9622.
- Численное моделирование конструкций сооружений башенного типа в программных комплексах ANSYS и ЛИРА-САПР / А. Д. Зиганшин, Л. Ш. Ахтямова, Л. С. Сабитов [и др.] // Научно-технический вестник Поволжья. – 2021. – № 2. – С. 65–67.
- Действительная работа стальных конструкций воздушных линий электропередачи напряжением 35 кв и выше / Н.А. Сенькин, Т. Е. Белякова, Д. А. Мальчиков, В. С. Васильев // Металлические конструкции. 2022. Т. 28, № 1. С. 5–18.
- Критический анализ конструкций технологических и кабельных эстакад, а также отдельно стоящих опор под трубопроводы промышленных предприятий / К. Г. Адуш-

REFERENCES

- Analiz naprjazhenno-deformirovannogo sostojanija optimal'noj ankernouglovoj opory vozdushnoj linii 110 kv [The analysis of the stress-strain state of the optimal corner deadend support of overhead power transmission line 110 kv] / A. V. Tanasoglo, S. N. Bakaev, A. V. Mushhanov, K. S. Bakaeva // Metallicheskie konstrukcii [Metal constructions]. 2018. No. 1. Pp. 17–28.
- Naprjazhenno-deformirovannoe sostojanie metallicheskih konstrukcij sooruzhenij jelektrosetevogo hozjajstva pri dejstvii razlichnyh vidov nagruzok [Stress-strain state of metal structures of electric grid facilities under the action of various types of loads] / Je. Ju. Abdullazjanov, L. S. Sabitov, M. M. Ajzatullin and others // Inzhenernyj vestnik Dona [Engineering journal of Don]. – 2024. – No. 10 (118). – URL: ivdon.ru/ru/ magazine/archive/n10y2024/9556.
- 3. Harakternye defekty i nesovershenstva stroitel'nyh kon-

СТРОИТЕЛЬНОЕ ПРОИЗВОДСТВО № 4 (52)'2024

- тым одноцепным типовым опорам ВЛ напряжением 220—750 кВ, которые воспринимают нагрузку только от одного провода, что исключает появление значительных крутящих моментов в процессе эксплуатации; данная гипотеза требует расчётного подтверждения. Дальнейшие аналогичные исследования могут быть также продолжены по отношению к решётчатым порталам с траверсами;
- 5) предлагаемые трёхгранные решётчатые сечения опор могут найти применение в сооружениях, у которых основными расчётными усилиями являются сжатие, изгиб и поперечная сила относительно оси опоры, например: опоры связи и освещения, анкерные опоры эстакад с прокладкой одного трубопровода, опоры с подвеской различных материалов (баннеров, тросов, сеток и т. п.).
- кин, Л. А. Токарева, М. М. Айзатуллин, Л. С. Сабитов // Вестник ГГНТУ. Технические науки. 2024. Т. 20, № 2 (36). С. 94–105.
- 3. Патент на полезную модель № 227349 U1 Российская Федерация, МПК ЕО4Н 12/10. Портальная опора переменного сечения линии электропередачи : № 2024102688 : заявл. 02.02.2024 : опубл. 17.07.2024 / Л. С. Сабитов, Э. Ю. Абдуллазянов, М. М. Айзатуллин [и др.] ; заявитель Федеральное государственное бюджетное образовательное учреждение высшего образования «Казанский государственный энергетический университет».
- 9. Патент на полезную модель № 227347 U1 Российская Федерация, МПК Е04Н 12/10. Портальная опора: № 2024102679 : заявл. 02.02.2024 : опубл. 17.07.2024 / Л. С. Сабитов, Э. Ю. Абдуллазянов, М. М. Айзатуллин [и др.] ; заявитель Федеральное государственное бюджетное образовательное учреждение высшего образования «Казанский государственный энергетический университет».
- 10. Патент на полезную модель № 227344 U1 Российская Федерация, МПК Е04Н 12/10. Портальная опора линии электропередачи: № 2024102682: заявл. 02.02.2024: опубл. 17.07.2024 / Л. С. Сабитов, Э. Ю. Абдуллазянов, М. М. Айзатуллин [и др.]; заявитель Федеральное государственное бюджетное образовательное учреждение высшего образования «Казанский государственный энергетический университет».
- 11. Патент на полезную модель № 227322 U1 Российская Федерация, МПК E04H 12/10. Портальная опора переменного сечения: № 2024102687: заявл. 02.02.2024: опубл. 16.07.2024 / Л. С. Сабитов, Э. Ю. Абдуллазянов, М. М. Айзатуллин [и др.]; заявитель Федеральное государственное бюджетное образовательное учреждение высшего образования «Казанский государственный энергетический университет».
 - strukcij opor jestakad promyshlennyh predprijatij [Characteristic defects and imperfections of building structures of supports of overpasses of industrial enterprises] / L. S. Sabitov, K. G. Adushkin, L. A. Tokareva and others. DOI 10.54950/26585340_2024_3_16 // Stroitel'noe proizvodstvo [Construction production]. 2024. No. 3. Pp. 16–26.
- Naprjazhenno-deformirovannoe sostojanie sooruzhenij jelektrosetevogo hozjajstva, raspolozhennyh v uslovijah Krajnego Severa [Stress-strain state of electric grid facilities located in the Far North] / Je. Ju. Abdullazjanov, L. S. Sabitov, M. M. Ajzatullin and others // Inzhenernyj vestnik Dona [Engineering journal of Don]. 2024. No. 11 (119). URL: ivdon.ru/ru/magazine/archive/n11y2024/9622.
- Chislennoe modelirovanie konstrukcij sooruzhenij bashennogo tipa v programmnyh kompleksah ANSYS i LIRA-SAPR [Numerical simulation of tower-type structures in ansys and lira-cad software systems] / A. D. Ziganshin, L. Sh. Ahtjamo-

28

- va, L. S. Sabitov and others // Nauchno-tehnicheskij vestnik Povolzh'ja [Scientific and technical bulletin of the Volga region]. - 2021. - No. 2. - Pp. 65-67.
- 6. Dejstvitel'naja rabota stal'nyh konstrukcij vozdushnyh linij jelektroperedachi naprjazheniem 35 kv i vyshe [The actual operation of steel structures of overhead power lines with a voltage of 35 kv and above] / N. A. Sen'kin, T. E. Beljakova, D. A. Mal'chikov, V. S. Vasil'ev // Metallicheskie konstrukcii [Metal constructions]. - 2022. - No. 1. - Pp. 5-18.
- 7. Kriticheskij analiz konstrukcij tehnologicheskih i kabel'nyh jestakad, a takzhe otdel'no stojashhih opor pod truboprovody promyshlennyh predprijatij [Critical analysis of the of technological and cable racks designs, as well as separate-standing supports for pipelines of industrial enterprises] / K. G. Adushkin, L. A. Tokareva, M. M. Ajzatullin, L. S. Sabitov // Vestnik GGNTU. Tehnicheskie nauki [Herald of GSTOU. Technical Sciences]. - 2024. - No. 2 (36). - Pp. 94-105.
- 8. Patent No. 227349 U1 Russian Federation, IPC E04H 12/10.

- Portal support of variable cross-section of the power line / L. S. Sabitov, Je. Ju. Abdullazjanov, M. M. Ajzatullin and others; application 2024102688; publ. 17/07/2024; the applicant is Kazan State Power Engineering University.
- 9. Patent No. 227347 U1 Russian Federation, IPC E04H 12/10. Portal support / L. S. Sabitov, Je. Ju. Abdullazjanov, M. M. Ajzatullin and others; application 2024102679; publ. 17/07/2024; the applicant is Kazan State Power Engineering University.
- 10. Patent No. 227344 U1 Russian Federation, IPC E04H 12/10. Portal support of the power line / L. S. Sabitov, Je. Ju. Abdullazjanov, M. M. Ajzatullin and others; application 2024102682; publ. 17/07/2024; the applicant is Kazan State Power Engineering University.
- 11. Patent No. 227322 U1 Russian Federation, IPC E04H 12/10. Portal support of variable cross-section / L. S. Sabitov, Je. Ju. Abdullazjanov, M. M. Ajzatullin, and others; application 2024102687; publ. 16/07/2024; the applicant is Kazan State Power Engineering University.

УДК 69

DOI: 10.54950/26585340 2024 4 30

Моделирование продолжительности этапов конкурсных процедур

Modeling the Duration of Stages of Competitive Procedures

Олейник Павел Павлович

Доктор технических наук, профессор, профессор кафедры «Технологии и организация строительного производства», ФГБОУ ВО «Национальный исследовательский Московский государственный строительный университет» (НИУ МГСУ), Россия, 129337, Москва, Ярославское шоссе, 26, cniomtp@mail.ru

Olevnik Pavel Pavlovich

Doctor of Technical Sciences, Professor, Professor of the Department of Technologies and Organization of Construction Production, National Research Moscow State University of Civil Engineering (NRU MGSU), Russia, 129337, Moscow, Yaroslavskoe shosse, 26, cniomtp@mail.ru

Казарян Рубен Рафаелович

Доктор технических наук, профессор, профессор кафедры «Технологии и организация строительного производства», ФГБОУ ВО «Национальный исследовательский Московский государственный строительный университет» (НИУ МГСУ), Россия, 129337, Москва, Ярославское шоссе, 26, r.kazarian@mail.ru

Kazarvan Ruben Rafaelovich

Doctor of Technical Sciences, Professor, Professor of the Department of Technologies and Organization of Construction Production, National Research Moscow State University of Civil Engineering (NRU MGSU), Russia, 129337, Moscow, Yaroslavskoe shosse, 26, r.kazarian@mail.ru

Нелина Дарья Владимировна

Старший преподаватель кафедры «Технологии и организация строительного производства», ФГБОУ ВО «Национальный исследовательский Московский государственный строительный университет» (НИУ МГСУ), Россия, 129337, Москва, Ярославское шоссе, 26, NelinaDV@mgsu.ru

Nelina Daria Vladimirovna

Senior Lecturer of the Department of Technologies and Organization of Construction Production, National Research Moscow State University of Civil Engineering (NRU MGSU), Russia, 129337, Moscow, Yaroslavskoe shosse, 26, NelinaDV@mgsu.ru

Аннотация. Целью данной статьи является моделирование продолжительности этапов конкурсных процедур во времени. Для достижения данной цели был проведён анализ нормативно-технической документации, научной литературы и практического опыта. В результате анализа мы выявили элементы каждого этапа, определили максимальные и минимальные значения их продолжительности для дальнейшего совмещения этапов в целом и элементов каждого этапа между собой во вре-

Путём проведения экспертного опроса были выявлены факторы, влияющие на продолжительность этих этапов и их элементов. Эксперт должен был оценить влияние факторов на элементы конкурсных процедур методом априорного ранжирования. Систематизация факторов и понимание критериев, которые на них влияют, позволяют лучше определять возмож-

ные задержки в процессе организации конкурсных процедур и усовершенствовать этот процесс для достижения наилучших результатов, повышения эффективности и улучшения конкурентоспособности строительного сектора.

В результате исследования построен календарный план по минимальным и максимальным срокам продолжительности каждого элемента. Выведено уравнение множественной регрессии, которое поможет сформировать методику, позволяющую совместить или сократить сроки продолжительности элементов конкурсных процедур во времени с учётом влияния факторов, определённых в исследовании.

Ключевые слова: моделирование, конкурсные процедуры, факторы, увязка во времени, влияние факторов, этапы конкурсных процедур, элементы конкурсных процедур, экспертный опрос, метод априорного ранжирования, диаграмма рангов.

> © Олейник П. П., Казарян Р. Р., Нелина Д. В., 2024, Строительное производство № 4'2024

СТРОИТЕЛЬНОЕ ПРОИЗВОДСТВО № 4 (52)'2024

Abstract. The purpose of this article is to model the duration of the stages of competitive procedures in time. To achieve this goal, an analysis of regulatory and technical documentation, scientific literature and practical experience was conducted. As a result of the analysis, we identified the elements of each stage, determined the maximum and minimum values of their duration for further combination of stages as a whole and the elements of each stage with each other in time.

By conducting an expert survey, factors influencing the duration of these stages and their elements were identified. The expert had to assess the influence of factors on the elements of competitive procedures using the a priori ranking method. Systematization of factors and understanding of the criteria that affect them allows you to better determine possible delays in the process of

Введение

В настоящее время проведение конкурсных процедур отражает интеграцию интересов заказчика и подрядчика.

Структурно конкурсные процедуры состоят из трёх этапов: подготовки, проведения и завершения (оформление результатов), каждый этап включает в себя множество элементов. В процессе проведения конкурсов у разных организаторов элементы могут сочетаться во всевозможных вариантах с различными сроками. В связи с этим требуется разработать рациональную структуру элементов и их увязки между собой. Именно поэтому данная тема является актуальной. Правильно организованный процесс конкурсных процедур может значительно повысить эффективность применения бюджетных средств и улучшить качество выполняемых работ или предоставляемых услуг [1]. Сокращение сроков проведения конкурсных процедур в строительстве является не только актуальной задачей, но необходимостью для оптимизации процессов, повышения эффективности и улучшения конкурентоспособности строительного сектора.

Материалы и методы

В результате исследования был проведён экспертный опрос для выявления факторов, влияющих на продолжительность элементов конкурсных процедур во времени, а также для определения максимального и минимального времени организации этих элементов. Эксперт должен был оценить влияние факторов на элементы конкурсных процедур методом априорного ранжирования. Также в

organizing competitive procedures and improve this process to achieve the best results, increase efficiency and improve the competitiveness of the construction sector. As a result of the study, a calendar plan was built for the minimum and maximum duration of each element.

A multiple regression equation is derived, which will help to form a methodology that allows you to combine or reduce the duration of the elements of competitive procedures in time, taking into account the influence of the factors identified in the study.

Keywords: modeling, competitive procedures, factors, time linkage, influence of factors, stages of competitive procedures, elements of competitive procedures, expert survey, a priori ranking method, rank diagram.

результате исследований была проанализирована нормативно-техническая литература [2; 3], на основе чего были получены элементы каждого этапа конкурсных процедур, и проанализирована литература для сравнения полученных расчётных данных с табличными критериями Пирсона [4] с целью подтверждения согласованности мнений и проверки неслучайности согласия экспертов.

Результаты

Анализ теории и практики подготовки, проведения и завершения конкурсных процедур в строительстве показал, что на каждом этапе конкурсных процедур существуют различные элементы их организации, которые не всегда рационально увязаны между собой [5; 6], в связи с чем появилась задача сформировать концепцию развития конкурсных процедур. Мы выявили элементы каждого этапа, определили максимальные и минимальные значения их продолжительности (таблица 1) для дальнейшего совмещения этапов в целом и элементов каждого этапа между собой во времени.

Результаты проведённого исследования позволили выявить факторы, которые влияют на продолжительность конкурсных процедур [7; 8]. Следует отметить, что выявление и систематизация этих факторов очень полезна для эффективной организации проведения торгов, управления процессами закупок и услуг. Сроки этапов подготовки, проведения и завершения конкурсных процедур зависят от различных параметров, таких как объём конкурсной документации, точность технического зада-

Наименование этапа	Наименование элемента	Продолжительность (дни)			
паименование этапа	паименование элемента	Минимум	Максимум		
Этап 1. Подготовка конкурсных процедур	Подготовка исходной документации для формирования закупки и расчёта начальной максимальной цены контракта (НМЦК)	7	14		
	Расчёт НМЦК	3	5		
	Формирование, согласование, выпуск приказа на осуществление закупки	3	7		
	Образование комиссии по осуществлению закупок	5	14		
	Формирование, размещение план-графика в ЕИС	3	5		
	Подготовка закупочной документации	3	5		
Этап 2.	Объявление закупки (конкурс в электронной форме), приём заявок	7	15		
Проведение конкурсных процедур	Поступление запроса о даче разъяснений положений извещения по закупке	1	15		
	Ответ на запрос о даче разъяснений положений извещения по закупке	1	2		
	Внесение изменений в извещение о закупке	1	15		
Этап 3.	Окончание приёма заявок	7	15		
Завершение конкурсных процедур	Рассмотрение вторых частей заявок. Публикация протокола оценки и рассмотрения вторых частей заявок	1	2		
	Публикация итогового протокола	1	1		
	Заключение контракта	10	20		

Табл. 1. Этапы и элементы конкурсных процедур **Tab. 1.** Stages and elements of competitive procedures

№ пп.	Наименование фактора	Условное обозначение фактора
1	Стоимость объекта закупки	ф1
2	Сложность объекта закупки	ф2
3	Объём подготовки конкурсной документации	ф3
4	Некорректно составленное техническое задание	ф4
5	Представлен неполный комплект конкурсной документации	ф5
6	Несоблюдение порядка разработки, согласования и утверждения документов	ф6
7	Невыполнение договорных обязательств по завершении проведённых конкурсов	ф7
8	Несвоевременное подписание контракта	ф8
9	Сложность оценки конкурсных предложений	ф9
10	Внесение изменений в конкурсную документацию	ф10
11	Низкая квалификация сотрудников – организаторов / участников конкурса	ф11
12	Несвоевременная дача разъяснений со стороны заказчика	ф12
13	Низкий спрос / отсутствие спроса на предмет закупки	ф13
14	Ошибочная стратегия выбора победителя	ф14
15	Большая продолжительность периода между торгами и выполнением контракта	ф15
16	Проблемы координации между отделами подрядной организации	ф16
17	Обеспечение участия	ф17
18	Невозможность внесения корректировок в условия договора в процессе выполнения работ	ф18
19	Увеличение количества несостоявшихся конкурсов	ф19
20	Срыв процедур размещения заказов «серыми» участниками	ф20

Табл. 2. Факторы, влияющие на продолжительность конкурсных процедур **Таb. 2.** Factors influencing the duration of competitive procedures

ния, сложность и стоимость объекта закупки и т. д. В этой связи мы подготовили факторы, влияющие на временные рамки организации конкурсных процедур на всех этапах их проведения (таблица 2).

Исходя из предложенных факторов становится понятно, что для увеличения эффективности проведения конкурсных процедур, сокращения времени организации и улучшения качества исполнения работ или услуг необходимо понять те факторы, которые имеют большее влияние на процесс организации конкурсов, так как систематизация факторов и понимание критериев, которые на них влияют, позволяют лучше определять возможные задержки в процессе организации конкурсных процедур и оптимизировать их процесс для достижения наилучших результатов [9].

В этой связи было проведено исследование по изучению опыта работы экспертов по организации этапов подготовки, проведения и завершения конкурсных процедур во времени. Индивидуальные ранги экспертов сведены в таблицу априорного ранжирования (таблица 3).

В процессе расчётов вычисляем сумму рангов (1):

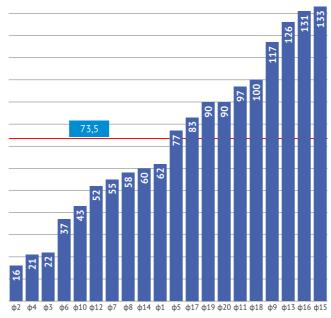
$$\sum_{\phi=1}^{\phi} \Delta_{\phi} = 1470, \tag{1}$$

а также рассчитываем среднюю сумму рангов (2):

$$\Delta = \frac{\sum_{\phi=1}^{\phi} \Delta_{\phi}}{\phi} = 73.5. \tag{2}$$

Для определения согласованности мнений экспертов [10] рассчитываем значение коэффициента конкордации Кендалла [9] по формуле (3):

$$W = \frac{12S}{n^2 \times (\phi^3 - \phi)},\tag{3}$$


$$W = \frac{12 \times 25733}{7^2 \times (20^3 - 20)} = 0,79.$$

В связи с тем, что коэффициент конкордации отличается от нуля ($W \ge 0.5$), в соответствии с [4] делаем вывод, что мнения экспертов согласованны и можно выполнять проверку неслучайности согласия экспертов. Для этого вычисляем расчётное значение критерия Пирсона по формуле 4:

$$\chi_p^2 = W \times n \times (\phi - 1) = 0.79 \times 7 \times 19 = 105.03.$$
 (4)

Сравниваем расчётное значение критерия Пирсона с табличным [16] при уровне статистической значимости $-\alpha = 0.01$.

В результате расчётов получили $\chi_T^{\ 2}=36,2$, делаем вывод, что неравенство верно $\chi_{_P}^{\ 2}>\chi_{_T}^{\ 2},$ что подтверждает

Рис. 1. Априорная диаграмма рангов **Fig. 1.** A priori rank diagram

Условное обозначение		Номера для экспертов, <i>т</i>							Δ΄ Δ΄ Δ΄ Α΄		Aoe A	
фактора	1	2	3	4	5	6	7	Сумма рангов, Δ ϕ	Отклонение суммы рангов, Δ΄,	(⊿ ′ _φ)²	имаег сто, /	Bec, <i>q</i> _¢
	Ранги оценки, $a_{\phi m}$						ран	Отк		Занимаемое место, <i>М</i>	Δ	
φ1	12	10	10	9	1	10	10	62	-11,5	132,25	10	0,10
φ2	5	1	1	1	6	1	1	16	-57,5	3306,25	1	0,19
φ3	2	2	2	2	10	2	2	22	-51,5	2652,25	3	0,17
φ4	4	3	3	3	2	3	3	21	-52,5	2756,25	2	0,18
φ5	3	14	14	15	3	14	14	77	3,5	12,25	11	0,09
ф6	8	4	4	4	8	5	4	37	-36,5	1332,25	4	0,16
φ7	9	5	5	13	12	6	5	55	-18,5	342,25	7	0,13
ф8	11	6	6	12	13	4	6	58	-15,5	240,25	8	0,12
φ9	16	16	16	17	20	16	16	117	43,5	1892,25	16	0,04
φ10	6	7	7	5	4	7	7	43	-30,5	930,25	5	0,15
φ11	17	17	17	7	5	17	17	97	23,5	552,25	14	0,06
φ12	7	8	8	6	7	8	8	52	-21,5	462,25	6	0,14
φ13	18	18	18	18	18	18	18	126	52,5	2756,25	17	0,03
φ14	1	9	9	8	15	9	9	60	-13,5	182,25	9	0,11
φ15	19	19	19	19	19	19	19	133	59,5	3540,25	19	0,01
φ16	20	20	20	20	11	20	20	131	57,5	3306,25	18	0,02
φ17	13	11	11	10	16	11	11	83	9,5	90,25	12	0,08
φ18	10	15	15	16	14	15	15	100	26,5	702,25	15	0,05
φ19	14	12	12	11	17	12	12	90	16,5	272,25	13	0,07
φ20	15	13	13	14	9	13	13	90	16,5	272,25	13	0,07
Σ	210	210	210	210	210	210	210	1470		25733		

Табл. 3. Таблица априорного ранжирования **Таb. 3.** A priori ranking table

гипотезу о неслучайности согласия экспертов. Таким образом, полученные результаты могут использоваться в исследовании [10; 11].

Далее выполняется построение априорной диаграммы рангов. Априорная диаграмма рангов представлена на рисунке 1. На диаграмме рангов показан предел (красная линия) отбрасываемых факторов и значения сумм рангов, превышающие среднее значение суммы рангов.

По результатам анализа априорной диаграммы рангов можно сделать следующие выводы, что наиболее важными факторами, влияющими на продолжительность выполнения элементов на этапах конкурсных процедур в строительстве, являются 10 факторов, имеющих сумму рангов ниже средней, в том числе:

- сложность объекта закупки (ф2);
- некорректно составленное техническое задание (ф4);
- объём подготовки конкурсной документации (ф3);
- несоблюдение порядка разработки, согласования и утверждения документов (ф6);
- внесение изменений в конкурсную документацию (ф10);
- несвоевременная дача разъяснений со стороны заказчика (ф12);
- невыполнение договорных обязательств по завершении проведённых торгов (ф7);

- несвоевременное подписание контракта (ф8);
- ошибочная стратегия выбора победителя (ф14);
- стоимость объекта закупки (ф1).

В результате приведённой статистики будет построена модель, которая увязывает между собой влияющие факторы и этапы конкурсных процедур. Она представляет собой уравнение множественной регрессии следующего вида (формула 5):

$$K = a_0 + \sum_{i=1}^{10} a_i \phi_i.$$
 (5)

На основании экспертного опроса, анализа нормативной литературы была определена продолжительность для каждого элемента с учётом возможного начала и окончания. В результате был построен календарный план этапов реализации полного цикла конкурсных процедур, включающий минимальные и максимальные сроки (обозначены чёрным и красным цветом на графике Ганта) (рисунок 2).

Следующей задачей исследований будет создание методики, которая позволит совместить или сократить сроки продолжительности элементов конкурсных процедур во времени с учётом влияния факторов, которые уже определены в исследовании.

Заключение

В результате исследования были выявлены факторы, влияющие на продолжительность элементов конкурс-

Рис. 2. Календарный план реализации полного цикла конкурсных процедур **Fig. 2.** Calendar plan for the implementation of the full cycle of competitive procedures

курсных процедур.

Условные обозначения: — Минимальные сроки ----- Максимальные сроки ----- Процедура на любом интервале времени

ных процедур и этапов в целом, из них в результате экспертного опроса путём метода априорного ранжирования было выявлено 10 основных факторов, влияющих на продолжительность организации конкурсов. Построенный календарный план по минимальным и максимальным срокам продолжительности каждого элемента с учётом уравнения множественной регрессии позволит сформировать методику, в которой будут даны соответствую-

18–23 ноября 2019 г.: в 3 ч. Ч. 2. – Санкт-Петербург : ФГАОУ

щие рекомендации по структуре элементов, их увязки и

продолжительности с учётом факторов, которые на них

влияют. В этом случае возможны варианты календарных

планов, которые потребуют изменения сроков продолжи-

тельности в каждом конкретном моменте своей привязки,

исходя из активности конкретного фактора на этапы кон-

СПИСОК ЛИТЕРАТУРЫ

- 1. Шаховская, В. Н. Конкуренция и подрядные торги в строительстве / В. Н. Шаховская // Вестник Полоцкого государственного университета. Серия D. Экономические и юридические науки. 2006. № 8. С. 33 36.
- О контрактной системе в сфере закупок товаров, работ, услуг для обеспечения государственных и муниципальных нужд: Федеральный закон № 44-Ф3 от 05.04.2013 (в редот 08.08.2024): принят Государственной Думой 22 марта 2013 года: одобрен Советом Федерации 27 марта 2013 года / Собрание законодательства Российской Федерации. 8 апреля 2013. № 14. Ст. 1652.
- 3. Положение о закупках товаров, услуг или работ отдельными видами юридических лиц: Федеральный закон № 223-Ф3 от 18.07.2011 (в ред. от 08.08.2024): принят Государственной Думой 8 июля 2011 года: одобрен Советом Федерации 13 июля 2011 года / Собрание законодательства Российской Федерации. 25 июля 2011. № 30 (часть I). Ст. 4571.
- 4. Скляр, В. А. Организация и математическое планирование эксперимента: учебное пособие / В. А. Скляр. Екатеринбург: Издательские решения, 2017. 92 с.
- 5. Олейник, П. П. Основные тенденции развития организации строительного производства / П. П. Олейник. DOI $10.54950/26585340_2022_2_21$ // Строительное производство. 2022. N° 2. C. 21–25.
- 6. Саная, А. Л. Оценка эффективности контрактной системы в сфере государственных и муниципальных закупок / А. Л. Саная // Неделя науки СПбПУ: Материалы научной конференции с международным участием, ИПМЭиТ, Санкт-Петербург,

- BO «CΠ6ΠУ», 2019. C. 393–396.
 Kazaryan, R. Aspects of the System Approach to Using Information Modelling Technology in Organization of Construction Production / R. Kazaryan, E. B. Tregubova. DOI 10.1007/070.7.070.070.04.1777// Journational Constitution
- Information Modelling Technology in Organization of Construction Production / R. Kazaryan, E. B. Tregubova. DOI 10.1007/978-3-030-96380-4_177 // International Scientific Siberian Transport Forum TransSiberia 2021, Novosibirsk, 11–14 мая 2021 года. 2021. Vol. 402-1. Switzerland : Springer Nature Switzerland AG, 2022. Pp. 1605–1612.
- . Синенко, С. А. Особенности организации и проведения конкурсных подрядных торгов при реализации инвестиционно-строительных проектов / С. А. Синенко, В. А. Иванов, В. В. Ефимов // Научное обозрение. 2017. № 13. С.104–107.
- 9. Донцов, С. С. Основы эффективной организации тендера в строительной отрасли / С. С. Донцов // Вестник КазЭУ. 2011. № 5-6 (83-84). С. 86–89. URL: https://elibrary.ru/item.asp?id=46221881.
- 10. Лапидус, А. А. Формирование интегрального потенциала организационно-технологических решений посредством декомпозиции основных элементов строительного проекта / А. А. Лапидус. DOI 10.22227/1997-0935.2016.12.114-123 // Вестник МГСУ. 2016. № 12. C.114–123.
- 11. Загорская, А. В. Совершенствование научно-технического сопровождения проектных решений по организации строительства уникальных объектов : дис. ... канд. тех. наук : 05.02.22 / Ангелина Владимировна Загорская. Иваново, 2022. 171 с.
- 2. O kontraktnoj sisteme v sfere zakupok tovarov, rabot, uslug dlya obespecheniya gosudarstvennykh i munitsipal'nykh nuzhd: Federal'nyj zakon № 44-FZ ot 05.04.2013 (v red. ot 08.08.2024) [On the contract system in the field of procurement of goods, works, and services for State and Municipal Needs: Federal Law No. 44-FZ of 04/05/2013 (as amended dated 08.08.2024)]: prinyat Gosudarstvennoj Dumoj 22 marta

REFERENCES

 Shahovskaya, V. N. Konkurentsiya i podryadnye torgi v stroitel'stve [Competition and contract bidding in construction] / V. N. Shahovskaya // Vestnik Polotskogo gosudarstvennogo universiteta. Seriya D. Ehkonomicheskie i yuridicheskie nauki [Bulletin of the Polotsk State University. Series D. Economic and legal sciences]. – 2006. – No. 8. – Pp. 33–36.

- СТРОИТЕЛЬНОЕ ПРОИЗВОДСТВО № 4 (52)'2024
- St. Petersburg, November 18-23, 2019 : at 3 p.m. 2]. St. Petersburg : FSAOU VO "SPbPU", 2019. Pp. 393–396.
- Kazaryan, R. Aspects of the System Approach to Using Information Modelling Technology in Organization of Construction Production / R. Kazaryan, E. B. Tregubova. DOI 10.1007/978-3-030-96380-4_177 // International Scientific Siberian Transport Forum TransSiberia 2021, May 11-14, 2021. 2021. Vol. 402-1. Switzerland: Springer Nature Switzerland AG, 2022. Pp. 1605–1612.
- 8. Sinenko, S.A. Osobennosti organizacii i provedeniya konkursnyh podryadnyh torgov pri realizacii investicionno-stroitel'nyh proektov [Features of the organization and holding of competitive contract bidding in the implementation of investment and construction projects] / S. A. Sinenko, V. A. Ivanov, V. V. Efimov // Nauchnoe obozrenie. 2017. № 13. Pp. 104-107.
- Dontsov, S. S. Osnovy ehffektivnoj organizatsii tendera v stroitel'noj otrasli [Fundamentals of effective organization of tenders in the construction industry] / S. S. Dontsov // Vestnik KazEU [Bulletin of KazEU]. – 2011. – No. 5-6 (83-84). – Pp. 86-89. – URL: https://elibrary.ru/item.asp?id=46221881.
- 10. Lapidus, A. A. Formirovanie integral'nogo potentsiala organizatsionno-tekhnologicheskikh reshenij posredstvom dekompozitsii osnovnykh elementov stroitel'nogo proekta [Formation of the integral potential of organizational and technological solutions through the decomposition of the main elements of the construction project] / A. A. Lapidus. DOI: 10.22227/1997-0935.2016.12.114-123 // Vestnik MGSU [Bulletin of MGSU]. 2016. No. 12. Pp. 114–123.
- 11. Zagorskaya, A. V. Sovershenstvovanie nauchno-tekhnicheskogo soprovozhdeniya proektnykh reshenij po organizatsii stroitel'stva unikal'nykh ob"ektov : special'nost' 05.02.22 [Improving scientific and technical support for design solutions for organizing the construction of unique facilities : specialty 05.02.22] : dissertatsiya ... kandidata tekhnicheskikh nauk / Angelina Vladimirovna Zagorskaya. – Ivanovo, 2022. – 171 p.

DOI: 10.54950/26585340_2024_4_35

УДК 004.9:69

Art. 1652.

(part I). - Art. 4571.

Izdateľskie resheniya, 2017. – 92 p.

Информационные системы ЖКХ в цифровой вертикали строительной отрасли

Information Systems of Housing and Public Utilities in the Digital Vertical of Construction Industry

2013 goda: odobren Sovetom Federatsii 27 marta 2013 goda

[adopted by the State Duma on March 22, 2013 : approved

by the Federation Council on March 27, 2013] / Sobranie

zakonodatel'stva Rossijskoj Federatsii [Collection of Legisla-

tion of the Russian Federation]. - April 8, 2013. - No. 14. -

vidami yuridicheskikh lits : Federal'nyj zakon № 223-FZ ot

18.07.2011 (v red. ot 08.08.2024) [Regulations on the Procure-

ment of Goods, Services or Works by Certain Types of Legal

Entities: Federal Law No. 223-FZ of 07/18/2011 (as amended dated 08.08.2024)]: prinyat Gosudarstvennoj Dumoj

8 iyulya 2011 qoda : odobren Sovetom Federatsii 13 iyulya

2011 goda [adopted by the State Duma on July 8, 2011 : approved by the Federation Council on July 13, 2011] / Sobranie

zakonodatel'stva Rossijskoj Federatsii [Collection of Legis-

lation of the Russian Federation]. - July 25, 2011. - No. 30

perimenta: uchebnoe posobie [Organization and mathemati-

cal planning of the experiment] / V. A. Sklyar. – Ekaterinburg:

stroitel'nogo proizvodstva [Main trends in the development of

the organization of construction production] / P. P. Olejnik. -

DOI 10.54950/26585340 2022 2 21 // Stroitel'noe proizvod-

sfere gosudarstvennyh i municipal'nyh zakupok [Evaluation of

the effectiveness of the contract system in the field of public

and municipal procurement] / A. L. Sanaya // Nedelya nauki

SPbPU: Materialy nauchnoj konferentsii s mezhdunarod-

nym uchastiem, IPMEHiT, Sankt-Peterburg, 18-23 noyabrya

2019 g.: v 3 ch. Ch. 2 [SPbPU Science Week: Proceedings of a

scientific conference with international participation, IPMEiT,

stvo [Construction production]. – 2022. – No. 2. – Pp. 21–25.

6. Sanava, A. L. Otsenka ehffektivnosti kontraktnoi sistemy v

4. Sklyar, V. A. Organizatsiya i matematicheskoe planirovanie eks-

5. Olejnik, P. P. Osnovnye tendentsii razvitiya organizatsii

3. Polozhenie o zakupkakh tovarov, uslug ili rabot otdel'nymi

Попова Ольга Николаевна

Кандидат технических наук, доцент, заведующая кафедрой автомобильных дорог и строительного производства, ФГАОУ ВО «Северный (Арктический) федеральный университет имени М. В. Ломоносова» (САФУ), Россия, 163002, Архангельск, набережная Северной Двины, 17, oly-popova@yandex.ru

Popova Olga Nikolaevna

Candidate of Engineering Sciences, Associate Professor, Head of the Department of Highways and Construction Production, Northern (Arctic) Federal University named after M. V. Lomonosov (NArFU), Russia, 163002, Arkhangelsk, naberezhnaya Severnoj Dviny, 17, oly-popova@yandex.ru

Юдина Антонина Фёдоровна

Доктор технических наук, профессор, профессор кафедры технологии строительного производства, ФГБОУ ВО «Санкт-Петербургский государственный архитектурно-строительный университет» (СПбГАСУ), Россия, 190005, Санкт-Петербург, улица 2-я Красноармейская, 4, yudinaantonina2017@mail.ru

Yudina Antonina Fedorovna

Doctor of Technical Sciences, Professor, Professor of the Department of Construction Production Technology, St. Petersburg State University of Architecture and Civil Engineering (SPbGASU), Russia, 190005, Saint Petersburg, 2-ya Krasnoarmeyskaya, yudinaantonina 2017@mail.ru

Заостровская Алина Сергеевна

Студент магистратуры кафедры автомобильных дорог и строительного производства, ФГАОУ ВО «Северный (Арктический) федеральный университет имени М. В. Ломоносова» (САФУ), Россия, 163002, Архангельск, набережная Северной Двины, 17, zaostrovskaya.a@gmail.com

Zaostrovskaya Alina Sergeevna

Graduate student of the Department of Highways and Construction Production, Northern (Arctic) Federal University named after M. V. Lomonosov (NARFU), Russia, 163002, Arkhangelsk, naberezhnaya Severnoj Dviny, 17, zaostrovskaya.a@qmail.com

Аннотация. Целью исследования является трансформация данных информационных баз объектов государственного учёта жилищного фонда и включение их в структуру цифровой вертикали строительной отрасли.

Сформированная база государственной информационной системы жилищно-коммунального хозяйства (ГИС ЖКХ) активно используется для планирования капитального ремонта, структурирования жилищного фонда, а также в исследованиях, посвящённых вопросам эксплуатации, обслуживания и обследования жилой застройки. Изучение информации, размещённой в базе, показало, что она неполная и часто недостоверная, поэтому использование её для указанных целей не приведёт к получению релевантных решений и выводов.

Формированию достоверной базы способствуют интенсификация процесса цифровизации отрасли ЖКХ и включение её в цифровую вертикаль строительной отрасли, включая:

Abstract. The objective of this research is to transform the data from information bases concerning state-registered housing stock and integrate it into the digital framework of the construction industry. The established database within the state information system for housing and communal services is actively utilized for planning capital repairs, structuring the housing stock, and conducting studies related to the operation, maintenance, and inspection of residential buildings. However, an analysis of the information in the database has revealed that it is often incomplete and unreliable, making it unsuitable for informed decisionmaking and conclusions.

The development of a reliable database is supported by the acceleration of digitalization processes within the housing and utilities sector, facilitating its integration into the digital framework of the construction industry, which includes:

Введение

Стратегической целью трансформации отраслей строительства и жилищно-коммунального хозяйства является цифровизация. К основной задаче цифровой трансформации относится ускорение процессов электронного документооборота. Одним из инструментов преобразований являются информационные базы данных об объектах капитального строительства (ОКС) [1–3]. Их базовым элементом является информационная модель объекта капитального строительства (ИМ ОКС), формируемая на всех стадиях жизненного цикла (ЖЦ).

Процесс формирования, виды информационной модели и процесс их наполняемости (детализации) на стадиях ЖЦ ОКС представлены на рисунке 1. Практически предполагается, что исчерпывающая информационная модель объекта должна сформироваться последователь-

- разработку и внедрение механизмов передачи данных между информационными системами ГИС ОГД и
- актуализацию требований к информационной базе ГИС ЖКХ - перечень информации и структура данных информационной базы ГИС ЖКХ должны соответствовать требованиям, предъявляемым к информационным моделям на стадии проектирования.

Апробация произведена на примере цифровой информационной модели многоквартирного дома типовой серии совет-

Ключевые слова: информационная система, технологии информационного моделирования (ТИМ), эксплуатация объектов капитального строительства, цифровая вертикаль строительной

- Development and implementation of data transfer mechanisms between information systems: the GIS for Construction and Design Projects (CDP) and the GIS for Housing and
- Updating the requirements for the information base of the GIS in the Housing and Utilities Sector - the list of information and the data structure of the GIS information base in this sector should align with the requirements for information models during the design phase.

Approbation is made on the example of a digital information model of an apartment building of typical Soviet series.

Keywords: information system, building information modeling (BIM), building operation, digital vertical of the construction in-

но, пройдя все стадии ЖЦ, начиная с изысканий и проектирования.

Процесс создания, передачи и хранения данных об объектах капитального строительства представлен структурой цифровой вертикали строительной отрасли (рисунок 2). ИМ ОКС, сформированная в ходе реализации инвестиционно-строительного проекта, передаётся в государственные информационные системы обеспечения градостроительной деятельности (ГИС ОГД) для хранения и использования.

По завершении стадии строительства и после приёмки объекта в эксплуатацию интересанты информации, содержащейся в информационной модели, чаще всего меняются – объект переходит от подрядчика к эксплуатирующей организации. Однако в существующей структуре роль и функционал эксплуатирующей организации не определены. На текущий момент информационные

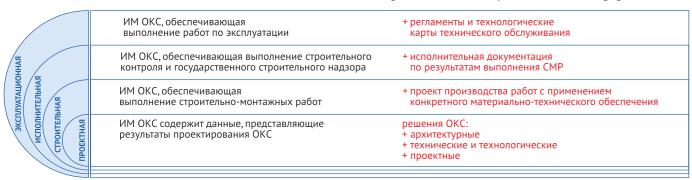



Рис. 1. Виды и взаимосвязь информационных моделей на стадиях ЖЦ Fig. 1. Types and Relationship of Information Models at the Life Cycle Stages

ГИСОГД – государственная информационная система обеспечения градостроительной

ИСУП – интегрированная автоматизированная информационная система заказчика / застройщика

ЕЦПЭ – единая цифровая платформа государственной экспертизы

ИС ГСН – информационная система государственного органа, обеспечивающая обмен данными и документацией в рамках осуществления строительного контроля

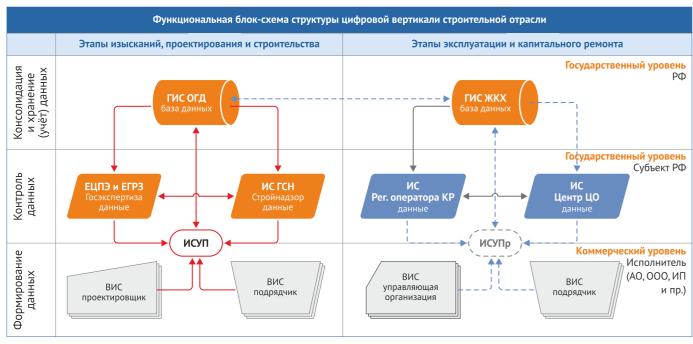
ИС проектной / подрядной организации информационная система, используемая проектными и подрядными организациями, как и ИСУП

ИС эксплуатирующей организации – система, обеспечивающая непрерывную эксплуатацию объектов недвижимости и производственных объектов с применением технологий информационного моделирования

Реализованные интеграции Интеграции апробируются ----- Интеграции в проработке

Рис. 2. Схема цифровой вертикали строительной отрасли **Fig. 2.** Scheme of the digital vertical of the construction industry

модели объектов на стадии эксплуатации не включены в структуру цифровой вертикали строительной отрасли. Такие модели дополняются эксплуатационной компонентой только в части разработки и внедрения программного обеспечения контроля и аккумулирования данных внутри эксплуатирующей здание организации [4].


Задача формирования информационной модели существующих объектов является более сложной в реализации. Эксплуатационная информационная модель (эксплуатационная ИМ) уже должна содержать совокупность сведений всех предшествующих стадий ЖЦ (так называемой фазы доставки), а затем дополняться данными мониторинга и управления процессом эксплуатации здания. Таким образом, для существующих объектов необходимо воспроизвести (сформировать) информационную модель фазы доставки.

С момента начала реализации цифровой трансформации наибольшее развитие технологий информационного моделирования (ТИМ) наблюдается в сфере программного обеспечения этапов инженерных изысканий и проектирования, отчасти эксплуатации. Вопросы, связанные с использованием ТИМ на фазе доставки, сейчас широко освещены, апробированы и изучены различные механиз-

мы формирования ИМ. Однако сейчас на первый план выходят процессы, системы и сервисы формирования, передачи и хранения информации. На этом этапе важным компонентом системы является структура и перечень (объём) передаваемой и обрабатываемой информации.

Структура информации информационных моделей стадий изысканий, проектирования и строительства приведена в классификаторе строительной информации. Их использование и структурирование широко обсуждается и исследуется [4-7]. Однако структура информационной модели на стадии эксплуатации размыта, не определена. Особенно ярко это отражается в отрасли ЖКХ. Существует ряд проблем, связанных с формированием и использованием информационных моделей на этапе эксплуатации жилищного фонда [8]:

- структура и перечень информации, размещаемой поставщиками в государственной информационной системе жилищно-коммунального хозяйства ГИС ЖКХ (Приказ Минстроя РФ от 07.02.2024 № 79/пр), фрагментированная, неполная;
- отсутствуют регламенты передачи, хранения и использования информационных моделей эксплуатирующими организациями;

Рис. 3. Информационные системы ЖКХ в структуре цифровой вертикали строительной отрасли **Fig. 3.** Information systems of housing and public utilities in the structure of the digital vertical of the construction industry

 большая часть жилищного фонда РФ введена в эксплуатацию до начала периода цифровизации строительства, поэтому информационные модели у существующих объектов не сформированы, и их использование на этапе эксплуатации невозможно.

Целью исследования является включение в структуру цифровой вертикали строительной отрасли информационных баз объектов государственного учёта жилищного фонда путём трансформации данных, содержащихся в ГИС ЖКХ.

Материалы и методы

Жилищный фонд подлежит государственному учёту, в том числе техническому, а также мониторингу использования и сохранности объектов. Очевидна взаимосвязь информационных систем ГИС ОГД и ГИС ЖКХ. Однако сформировавшаяся цифровая вертикаль строительной отрасли, представленная на рисунке 2, не предусматривает передачу данных между этими информационными системами. Предлагаемая структура цифровой вертика-

ли объединённых систем отраслей строительства и ЖКХ представлена на рисунке 3.

В первую очередь, необходимо предусмотреть горизонтальные механизмы обмена данными между информационными системами. Вертикальные связи заключаются в эффективных механизмах взаимодействия информационных баз и систем планирования, организации и контроля воспроизводства жилья посредством осуществления комплекса ремонтно-восстановительных работ (капитального ремонта и реконструкции).

Наступление периода капитального ремонта или реконструкции подразумевает вновь возвращение к последовательному формированию проектной, строительной и исполнительской ИМ, посредством которых осуществляются ремонтно-строительные работы, и сводная интегрированная модель обновляется и дополняется новыми данными. Формирование и ведение ИМ с передачей данных в информационную систему управления проектами (ИСУП) (рисунок 2) при капитальном ремонте или

Наименование	Информация о технических характеристиках объектов государственного учёта жилищного фонда, Приказ № 74/114/пр	Обязательные атрибуты ЦИМ ОКС (здание) СП 333.1325800.2020 Приложение Г и Д
Класс элементов	1. Общие сведения 2. Основные конструктивные элементы 3. ВИС отопления 4. ВИС холодного водоснабжения 5. ВИС горячего водоснабжения 6. ВИС водоотведения 7. ВИС газоснабжения 8. ВИС электроснабжения 9. Лифты	1. Архитектурно-конструктивные решения 2. Электроснабжение 3. Водоснабжение 4. Водоотведение 5. Отопление, вентиляция, кондиционирование, теплоснабжение 6. Автоматизация и связь 7. Газоснабжение 8. Вертикальный транспорт
Элементы	24 элемента	159 элементов
Характеристики/атрибуты	– 60 характеристик – 1–3 характеристики для каждого элемента	– более 3000 атрибутов согласно КСИ – 102 таблицы атрибутов – 5–20 атрибутов для каждого элемента
Характеристики технического состояния	– Общий износ здания, % – Физический износ элемента, %	– Процент износа здания, %
Стоимостные характеристики	Нет	Да

Табл. 1. Атрибутивный состав эксплуатационных ИМ МКД **Tab. 1.** Attribute composition of information models

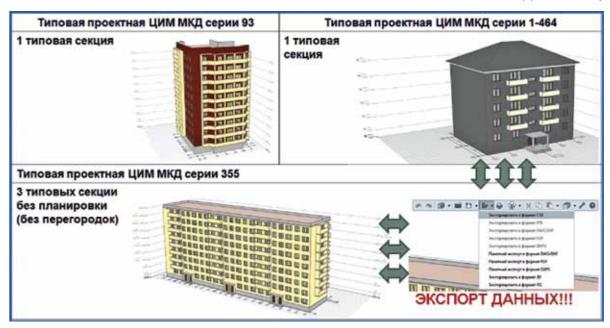


Рис. 4. Цифровые информационные модели МКД Fig. 4. Digital information models of apartment buildings

реконструкции, в ходе которой происходит обновление ИМ, сейчас не предусмотрены. Внедрённая в вертикаль информационная система управления проектами капитального ремонта (ИСУПр) позволит сопровождать реализацию проектов капитального ремонта, а также обновлять и вести информационную модель объекта на этапе эксплуатации.

Базовым элементом цифровой трансформации является информационная модель (ИМ). В отличие от проектной ИМ, атрибутивный состав которой достаточно полно описан (СП 333.1325800.2020, 4—7), эксплуатационная ИМ обозначена только общими рамками уровня проработки и отдельными атрибутами. Фактически эксплуатационная ИМ в информационных системах в рамках цифровой вертикали должна использоваться для мониторинга состояния здания, планирования ремонтно-восстановительных работ, оптимизации энергопотребления и т. д. Следовательно, перечень данных информационных систем разных этапов жизненного цикла (ГИС ОГД и ГИС ЖКХ) должен содержать одинаковые (унифициро-

ванные) характеристики элементов объектов капитального строительства.

В таблице 1 проанализированы требования к составу информации, размещаемой поставщиками информации в ГИС ЖКХ (Приказ Министроя РФ от 7 февраля 2024 г. № 79/пр) и требования к атрибутивному составу элементов цифровой информационной модели объекта капитального строительства (ЦИМ ОКС) (СП 333.1325800.2020).

Из данных таблицы видно, что состав информации, согласно Приказу № 79/пр, недостаточен для того, чтобы использовать сформированную таким образом базу для целей планирования капитального ремонта.

Декомпозиция элементов ЦИМ ОКС, согласно требованиям СП 333.1325800.2020, отражает сущность многокритериальной поэлементной структуры характеристик здания, но является избыточной для формирования информационной базы объектов государственного учёта жилищного фонда в части описания характеристик элементов. С другой стороны, информация об объектах государственного учёта жилищного фонда не предусма-

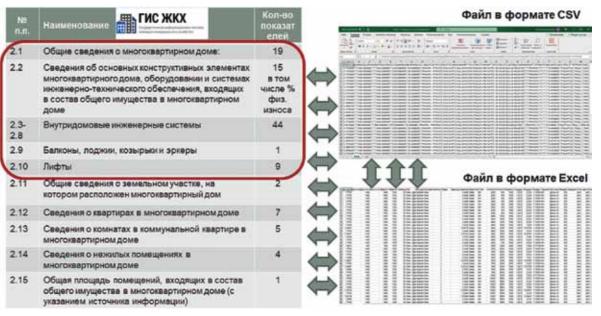


Рис. 5. Формирование ГИС ЖКХ на основе данных ЦИМ ОКС

Fig. 5. Formation of the information base of the state information system of the housing and utilities sector based on the data of the digital information model of the capital construction object

тривает описания технического состояния в категориях признаков износа, технологических решений и стоимости ремонтно-строительных работ.

Для реализации горизонтальной связи цифрового документооборота с фазы доставки в фазу эксплуатации необходимо актуализировать (адаптировать) перечень информации о технических характеристиках объектов.

Результаты

В рамках исследования разработано несколько цифровых информационных моделей многоквартирных домов типовых серий советской постройки (рисунок 4). Сформулированы требования и рекомендации к уровню детализации типовых цифровых информационных моделей для использования на этапе эксплуатации [8].

Представленная выгрузка данных позволяет сделать вывод, что сведения об объёмно-планировочных и конструктивных характеристиках здания полностью покрывают перечень сведений, необходимых к размещению в ГИС ЖКХ (рисунок 5).

Заключение

Сформированная база ГИС ЖКХ сейчас активно ис-

СПИСОК ЛИТЕРАТУРЫ

- 1. Овсянникова, Т.Ю. Технологии информационного моделирования: стратегические задачи и реалии цифровой трансформации в строительстве / Т.Ю. Овсянникова, А. А. Пацуков. DOI 10.22337/2073-8412-2022-1-13-18 // Недвижимость: экономика, управление. 2022. № 1 (2022). С. 13–18.
- 2. Лосев, К. Ю. К методологии автоматизации жизненного цикла зданий и сооружений / К. Ю. Лосев, Ю. Г. Лосев. DOI 10.15862/09SAVN122 // Вестник евразийской науки. 2022. Т. 14, № 1. С. 1–13.
- 3. Шеина, С. Г. Нормативное регулирование и опыт внедрения ВІМ на различных этапах жизненного цикла в России / С. Г. Шеина, С. Л. Шуйков. DOI 10.23947/2949-1835-2023-2-1-4-11 // Современные тенденции в строительстве, градостроительстве и планировке территорий. 2023. Т. 2, № 1. С. 4–11.
- Волков, В. А. Разработка структуры и композиции классификатора информации о зданиях в целях применения технологий ВІМ / В. А. Волкова, И. А. Волковы DOI 10.22227/1997-0935.2020.6.867-906 // Вестник MGSU. 2020. № 15 (6). С. 867–906.
- 5. Integration of Digital Twin and BIM Technologies within

REFERENCES

- Ovsyannikova, T. Yu. Tekhnologii informatsionnogo modelirovaniya: strategicheskie zadachi i realii tsifrovoj transformatsii v stroitel'stve [Information modeling technologies: strategic tasks and realities of digital transformation in construction] / T. Yu. Ovsyannikova, A. A. Patsukov. DOI 10.22337/2073-8412-2022-1-13-18 // Nedvizhimost': ehkonomika, upravlenie [Real Estate: economy, management]. 2022. No. 1 (2022). Pp. 13–18.
- Losev, K. Yu. K metodologii avtomatizatsii zhiznennogo tsikla zdanij i sooruzhenij [To the methodology of automation of the life cycle of buildings and structures] / K. Yu. Losev, Yu. G. Losev. – DOI 10.15862/09SAVN122 // Vestnik evrazijskoj nauki [Bulletin of Eurasian science]. – 2022. – Vol. 14, No. 1. – Pp. 1–13.
- 3. Sheina, S. G. Normativnoe regulirovanie i opyt vnedreniya BIM na razlichnykh ehtapakh zhiznennogo tsikla v Rossii [Normative regulation and experience of BIM implementation at different stages of life cycle in Russia] / S. G. Sheina, S. L. Shuikov. DOI 10.23947/2949-1835-2023-2-1-1-4-11 // Sovremennye tendentsii v stroitel'stve, gradostroitel'stve i planirovke territorij [Modern trends in construction, urban planning and territory planning]. 2023. Vol. 2, No. 1. Pp. 4–11.
- Volkov, V. A. Razrabotka struktury i kompozitsii klassifikatora informatsii o zdaniyakh v tselyakh primeneniya tekhnologij BIM [Development of structure and composition of the classifier of information about buildings for the purpose of BIM technologies application] / V. A. Volkova, I. A. Volkov. – DOI

пользуется для планирования капитального ремонта, структурирования жилищного фонда, а также в исследованиях, посвящённых вопросам эксплуатации, обслуживания и обследования жилой застройки. Изучение информации, размещённой в базе, показало, что она неполная и часто недостоверная, поэтому использование её для указанных целей не приведёт к получению релевантных решений и выводов. Формированию достоверной базы способствуют интенсификация процесса цифровизации отрасли ЖКХ и включение её в цифровую вертикаль строительной отрасли, включая:

- разработку и внедрение механизмов передачи данных между информационными системами ГИС ОГД и ГИС ЖКХ;
- актуализацию требований к информационной базе ГИС ЖКХ — перечень информации и структура данных информационной базы ГИС ЖКХ должны соответствовать требованиям, предъявляемым к информационным моделям на стадии проектирования.
- Factories of the Future / V. L. Badenko, N. S. Bolshakov, E. B. Tishchenko, A. A. Fedotov, A. C. Celani, V. K. Yadykin. DOI 10.34910/MCE.101.14 // Magazine of Civil Engineering. 2020. Vol. 101 (1). Art. 10114.
- Development of classification tables "Process management", "Design processes" and "Information" of the classifier of construction information for creating and maintaining information models of capital construction objects / V. S. Timchenko, V. A. Volkodav, I. A. Volkodav, O. V. Timchenko, N. A. Osipov. – DOI 10.22227/1997- 0935.2021.7.926-954 // Vestnik MGSU. – 2021. – No. 16 (7). – Pp. 926–954.
- 7. From sketch BIM to design BIM: An element identification approach using Industry Foundation Classes and object recognition / Q. Qiu, X. Zhou, J. Zhao, Y. Yang, Sh. Tian, J. Wang, J. Liu, H. Liu. DOI 10.1016/j.buildenv.2020.107423 // Building and Environment. 2021. Vol. 188. Art. 107423.
- Попова, О. Н. Проблемы и задачи построения цифровой информационной модели зданий для реализации программ капитального ремонта жилищного фонда / О. Н. Попова, А. С. Заостровская, А. Ф. Юдина. DOI 10.31659/0044-4472-2024-1-2-80-86 // Жилищное строительство. 2024. № 1-2. С. 80–86.
 - 10.2227/1997-0935.2020.6.867-906 // Vestnik MGSU [Bulletin of MGSU]. 2020. No. 15 (6). Pp. 867–906.
- Integration of Digital Twin and BIM Technologies within Factories of the Future / V. L. Badenko, N. S. Bolshakov, E. B. Tishchenko, A. A. Fedotov, A. C. Celani, V. K. Yadykin. DOI 10.34910/MCE.101.14 // Magazine of Civil Engineering. 2020. Iss. 101 (1). Article No. 10114.
- Development of classification tables "Process management", "Design processes" and "Information" of the classifier of construction information for creating and maintaining information models of capital construction objects / V. S. Timchenko, V. A. Volkodav, I. A. Volkodav, O. V. Timchenko, N. A. Osipov. – DOI 10.22227/1997- 0935.2021.7.926-954 // Vestnik MGSU. – 2021. – Vol. 16 (7). – Pp. 926–954.
- From sketch BIM to design BIM: An element identification approach using Industry Foundation Classes and object recognition / Q. Qiu, X. Zhou, J. Zhao, Y. Yang, Sh. Tian, J. Wang, J. Liu, H. Liu. DOI 10.1016/j.buildenv.2020.107423 // Building and Environment. 2021. Vol. 188. Article No. 107423.
- 8. Popova, O. N. Problemy i zadachi postroeniya tsifrovoj informatsionnoj modeli zdanij dlya realizatsii programm kapital'nogo remonta zhilishhnogo fonda [Problems and tasks of building a digital information model of buildings for the implementation of capital repair programs of the housing stock] / O. N. Popova, A. S. Zaostrovskaya, A. F. Yudina. DOI 10.31659/0044-4472-2024-1-2-80-86 // Zhilishhnoe stroitel'stvo [Housing Construction]. 2024. No. 1-2. Pp. 80–86.

УДК 691.535

DOI: 10.54950/26585340_2024_4_41

Прочность композитов на основе сырьевых компонентов, прошедших плазменную или механомагнитную активацию

Strength of Composites Based on Raw Materials That Have Undergone Plasma or Mechanomagnetic Activation

Ибрагимов Руслан Абдирашитович

Кандидат технических наук, доцент, заведующий кафедрой «Технологии строительного производства», ФГБОУ ВО «Казанский государственный архитектурно-строительный университет» (КГАСУ), Россия, 420043, Казань, улица Зеленая, 1, rusmag007@yandex.ru

Ibragimov Ruslan Abdirashitovich

Candidate of Engineering Sciences, Associate Professor, Head of the Department of Construction Production Technologies, Kazan State University of Architecture and Civil Engineering (KSUAE), Russia, 420043, Kazan, ulitsa Zelenaya, 1, rusmag007@yandex.ru

Налбандян Григор Виленович

Кандидат технических наук, государственный эксперт по интеллектуальной собственности, ФГБУ «Федеральный институт промышленной собственности» (ФИПС), Россия, 125993, Москва, Бережковская набережная, 30, grigor 33@mail.ru

Nalbandyan Grigor Vilenovich

Candidate of Engineering Sciences, State expert on intellectual property, Federal Institute of Industrial Property (FIIP), Russia, 125993, Moscow, Berezhkovskaya naberezhnaya, 30, grigor 33@mail.ru

Ушков Валентин Анатольевич

Доктор технических наук, профессор кафедры «Строительные материалы», ФГБОУ ВО «Национальный исследовательский Московский государственный строительный университет» (НИУ МГСУ), Россия, 129337, Москва, Ярославское шоссе, 26, va.ushkov@yandex.ru

Ushkov Valentin Anatolyevich

Doctor of Technical Sciences, Professor of the Department of Construction Materials, National Research Moscow State University of Civil Engineering (NRU MGSU), Russia, 129337, Moscow, Yaroslavskoe shosse, 26, va.ushkov@yandex.ru

Королев Евгений Валерьевич

Доктор технических наук, профессор, проректор, ФГБОУ ВО «Санкт-Петербургский государственный архитектурно-строительный университет» (СПбГАСУ), Россия, 190005, Санкт-Петербург, улица 2-я Красноармейская, 4, korolev@nocnt.ru

Korolev Evgeniy Valerievich

Doctor of Technical Sciences, Professor, Vice-Rector, Saint Petersburg State University of Architecture and Civil Engineering (SPbGASU), Russia, 190005, Saint Petersburg, ulitsa 2-ya Krasnoarmeyskaya, 4, korolev@nocnt.ru

Зигангирова Лейсан Идрисовна

Ассистент, аспирант кафедры «Технологии строительного производства», ФГБОУ ВО «Казанский государственный архитектурно-строительный университет» (КГАСУ), Россия, 420043, Казань, улица Зеленая, 1, rusmag007@yandex.ru

Zigangirova Leysan Idrisovna

Assistant, postgraduate student of the Department of Construction Production Technologies, Kazan State University of Architecture and Civil Engineering (KSUAE), Russia, 420043, Kazan, ulitsa Zelenaya, 1, rusmag007@yandex.ru

Аннотация. Введение. Настоящее исследование посвящено повышению качества строительных материалов, а именно – влиянию плазменной и механомагнитной активации сырьевых компонентов, химической природы и содержания фибры на прочность строительных композитов.

Материалы и методы. С целью повышения прочности строительных материалов исходный портландцемент и сырьевые компоненты подвергались воздействию низкотемпературной неравновесной плазмой (НТНП) либо механомагнитной активацией в аппарате вихревого слоя.

Результаты. Воздействие на строительные композиты как НТНП,так и механомагнитной обработкой повышает прочность матрицы на 50 % и более. Это обусловлено особенностью гидратации таких систем: по данным рентгенофазового анализа наблюдается уменьшение содержания исходных фаз цемент-

Abstract. Introduction. This study is devoted to improving the quality of building materials, namely, the effect of plasma and

ного клинкера, а количество кристаллитной части цементного камня увеличивается.

Выводы. Разработаны дисперсно-армированные композиты, полученные активацией в НТНП или механомагнитной обработкой, обладающие высокими эксплуатационными свойствами: возрастает трещиностойкость таких композитов, повышается их прочность, степень гидратации цементного камня и количество продуктов гидратации, снижается пористость таких композитов. Таким образом, предварительная обработка сырьевых компонентов в НТНП или в аппарате вихревого слоя является действенным методом повышения качества строительных композитов.

Ключевые слова: механомагнитная активация, фибра, низкотемпературная плазма, прочность, структура.

mechanomagnetic activation of raw materials, chemical nature and fiber content on the strength of building composites.

Materials and methods. In order to improve the strength of building materials, the original Portland cement and raw materials were exposed to low-temperature nonequilibrium plasma (LTNE) or mechanomagnetic activation in a vortex layer apparatus.

Results. The impact on building composites of both LTNE and mechanomagnetic treatment increases the strength of the matrix by 50% or more. This is due to the peculiarity of hydration of such systems: according to X-ray phase analysis, a decrease in the content of the initial phases of cement clinker is observed, and

Введение

В сфере строительного материаловедения проводятся активные исследования, нацеленные на совершенствование эксплуатационных свойств цементных композитов, включая мелкозернистые бетоны и строительные растворы [1]. Существуют различные методы повышения эксплуатационных свойств строительных композиционных материалов:

- механическая, механохимическая, механомагнитная, химическая или плазменная активация вяжущего [2];
- механическая, магнито-, электрохимическая или плазменная активация воды затворения [3];
- механохимическая, механомагнитная и плазменная активация мелкого минерального заполнителя [4];
- внедрение различной природы дисперсного армирования цементных композитов;
- введение наноструктурных частиц [5];
- сочетание вышеуказанных методов [6].

Механическая активация способствует увеличению удельной поверхности обрабатываемого материала, а также, в зависимости от уровня подведённой энергии, приводит к аморфизации поверхности частиц [7]. Для указанной активации портландцемента чаще всего используют аппараты вихревого слоя (АВС) [8] и вибромельницы различной конструкции или высокоэнергетическое шаровое фрезерование. При механохимической или механомагнитной активации частицы цемента преобразуются из угловатой формы в более окатанную, что также сопровождается увеличением тонкости помола портландцемента. Эти изменения способствуют значительному повышению прочности цементно-песчаных растворов. Существенное влияние на процесс структурообразования цементных композитов оказывают и кремнийсодержащие мелкие заполнители, активированные в центробежно-планетарных мельницах или в аппаратах вихревого слоя [9].

Одно из направлений физической активации — плазменная модификация исходных сырьевых компонентов [10]. При этом форма частиц кварцевого песка после его обработки низкотемпературной неравновесной плазмой (НТНП) оказывает существенное влияние на параметры гидратации портландцемента и структурообразование цементного камня.

Для получения цементных композитов с низкими значениями трещиностойкости возможно использовать фибру различной природы и размеров [11]. Эффективность работы фибрового армирования в теле матрицы, в первую очередь, зависит от смачиваемости поверхности самой используемой фибры, и только потом — от физико-механических характеристик материала фибры.

Таким образом, анализ научно-технической литературы показал, что эффективным направлением повышения эксплуатационных характеристик цементных составов, используемых для ремонта и восстановления бетонных

the amount of the crystalline part of the cement stone increases.

Conclusions. As a result of the studies, dispersed-reinforced composites with high crack resistance, strength, high degree of hydration of cement stone and low porosity were obtained. Thus, preliminary treatment of raw components in LTNP or in a vortex layer apparatus is an effective method of improving the quality of building composites.

Keywords: mechanomagnetic activation, fiber, low-temperature plasma, strength, structure.

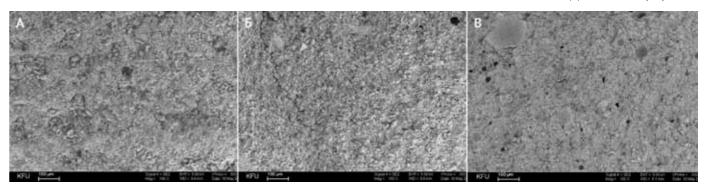
и железобетонных конструкций, является активация сырьевых компонентов НТНП или в аппаратах вихревого слоя (механомагнитная активация) в сочетании с их дисперсным армированием.

Цель данной работы — исследование влияния указанных способов обработки сырьевых компонентов на процессы структурообразования и гидратации композиционных систем.

Материалы и методы

Для проведения экспериментальных работ использовали портландцемент ЦЕМ І 42,5Н; кварцевый песок, неметаллическую (полипропиленовую (ВСМ), стеклянную, базальтовую, структурированный ферромагнитный микропровод (СФМП)) и стальную («челябинка») фибру. Указанные компоненты в проточном режиме подвергались воздействию НТНП по методике [12], а также в лабораторной установке в аппарате вихревого слоя по методике [13]. В качестве измельчающих тел приняты ферромагнитные элементы длиной 10—14 мм, диаметром 1 мм.

Цементные композиты твердели при относительной влажности 100% и температуре $20\pm2\degree$ С. Кроме того, влияние агрессивных сред (0,1H азотная, серная и соляная кислоты) на коррозионную стойкость цементного камня на основе портландцемента, активированного в ABC, изучалось в соответствии с методиками, представленными в работах [14]. Критерием стойкости цементного состава к действию исследованных растворов кислот являлся коэффициент коррозионной стойкости (K_c):


$$K_c = \frac{R_c}{R_w},\tag{1}$$

где $R_{\rm c}$ — прочность цементного камня в возрасте 180 суток при хранении в агрессивной среде; $R_{\rm w}$ — прочность цементного камня в возрасте 180 суток при твердении в водной среде.

Микроструктуру цементного камня изучали с помощью высокоразрешающего автоэмиссионного сканирующего электронного микроскопа Merlin компании CARL ZEISS. При определении количественного рентгенофазового анализа использовали метод Ритвельда с погрешностью 3 %. Составы дисперсно-армированных ремонтных смесей приняты следующими: портландцемент (22,12); фракционированный кварцевый песок (61,54); фибра (0,2); бесхлорная добавка (0,39); вода затворения (остальное).

Результаты

В результате проведённых экспериментальных исследований установлено, что плазменная обработка портландцемента в проточном режиме приводит к несущественному изменению минералогического состава цементного камня, твердевшего 28 суток: наблюдается повышение содержания портландита, а содержание C_3S и β - C_2S уменьшается, что свидетельствует о повышении сте-

Рис. 1. Микроструктура цементного камня (увеличение X100): а) контрольный состав; б) портландцемент, обработанный НТНП; в) портландцемент, обработанный в ABC

Fig. 1. Micrograph of cement composite (X100): a) control composition; b) portland cement treated with LTNE; c) portland cement activated in a vortex layer machine

пени гидратации. Механические и температурные воздействия при активации портландцемента в АВС приводят к разрушению кристаллической структуры минералов цементного клинкера. Так, температура обрабатываемого порошка в течение 5 минут достигает 70-80 °C. Механомагнитная активация портландцемента способствует росту общего количества кристаллических фаз, портландита, что закономерно снижает содержание исходных фаз вяжущего и повышает степень его гидратации. При этом наблюдаются значительные изменения в размерах кристаллов С₂S (уменьшение на 21 %), С₂S (на 18 %) и периклаза (на 29 %), в то время как средний размер кристаллитов C₃Acubic и C₄AF остаётся практически неизменным. Микроструктура цементного камня, полученного при обработке портландцемента в НТНП и механомагнитной активацией, показана на рисунке 1.

Таким образом, особенностью влияния рассмотренных выше методов активации портландцемента на структуру цементного камня является формирование кристаллических новообразований со значительно меньшей дисперсностью. Формирующиеся новообразования кри-

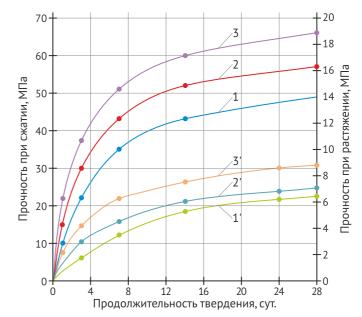
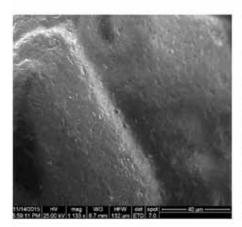


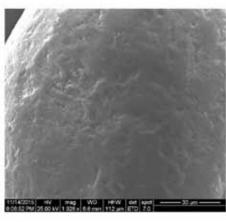
Рис. 2. Прочность при сжатии (1, 2, 3) и изгибе (1', 2', 3'): 1, 1' – контрольный состав; 2, 2' – портландцемент, обработанный НТНП; 3, 3' – портландцемент после механомагнитной активации

Fig. 2. Compressive strength (1, 2, 3) and bending strength (1', 2', 3'): 1, 1' – control composition; 2, 2' – portland cement treated with LTNE; 3, 3' – portland cement after mechanomagnetic activation

сталлизуются в более мелкодисперсном виде, что приводит к образованию в цементном камне более мелких пор и капилляров. Формирование мелкодисперсных новообразований в сочетании с более высокой степенью гидратации портландцемента способствует образованию более плотной структуры цементного камня и, следовательно, более высокой прочности. Прочность при сжатии цементного камня, обработанного в АВС, повышается на 125 и 35 % в первые и на 28 сутки твердения соответственно (см. рисунок 2).

Следует отметить, что активация портландцемента в АВС способствует формированию цементного камня с более высокой стойкостью к воздействию агрессивных сред (таблица 1). Из данных, представленных в таблице 1, следует, что цементные составы, полученные механомагнитной обработкой, повышают коррозионную стойкость на 11-15 % (при анализе значений K_c в соответствующих строках) и обладают более высокой коррозионной стойкостью к действию кислотных сред, что повышает, соответственно, срок эксплуатации строительных конструкций, восстановленных с помощью таких составов. Эти данные дополняют результаты работ [14; 15].


Плазменная обработка кварцевого песка вызывает аморфизацию поверхности его частиц (рисунок 3). Это подтверждается появлением чётко выраженного пика в диапазоне 465—475 см⁻¹ на спектрограмме комбинационного рассеивания света зёрен кварцевого песка, модифицированного плазмой [5]. Однократная плазменная обработка кварцевого песка в проточном режиме приводит к повышению предела прочности при сжатии мелкозернистых бетонов в возрасте 28 суток нормального твердения в 1,2 раза (с 23,5 до 28,3 МПа). Дополнительная обработка кварцевого песка в НТНП повышает прочность мелкозернистых бетонов на 13,3—17 %, достигая значений 33,1 и 38,2 МПа.


В то же время частицы ${
m SiO}_2$, обработанные в электромагнитной мельнице, характеризуются слоистой структурой, повышенной степенью шероховатости поверхности

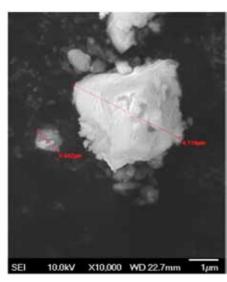

Активация ПЦ в АВС	<i>R_w,</i> МПа	Коэффициент коррозионной стойкости (K_c) в растворах кислот					
		соляной	серной	азотной			
-	45,69	0,84	0,85	0,89			
+	78,99	0,96	0,98	0,99			

Табл. 1. Влияние агрессивных сред на коррозионную стойкость цементного камня

Tab. 1. Influence of the model environment on the corrosion resistance coefficient

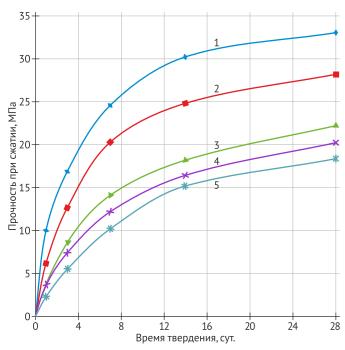


Рис. 3. Фотографии зёрен кварцевого песка: а) до обработки (X1000); б) после обработки НТНП (X1300); в) после обработки в ABC (X10000)

Fig. 3. Photographs of quartz sand grains: a) before processing (X1000); b) after processing in LTNE (X1300); c) after processing in the vortex layer apparatus (X10000)

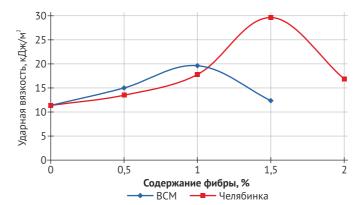
и развитой сетью микротрещин. Кроме того, в результате ударных воздействий образуются вкрапления, что также влияет на их физико-механические свойства. Особенность обработки кварцевого песка в ABC состоит в том, что при размалывании частиц SiO_2 разрушение зёрен мелкого заполнителя происходит не по плоскостям спайности, как в случае применения шаровой или центробежной мельницы, а по отдельным конгломератам (рисунок 3в), что свидетельствует о высокой энергонапряжённости ABC.

Выявлен синергетический эффект при совместной обработке кварцевого песка и воды затворения в НТНП, повышающий прочность мелкозернистого бетона (рисунок 4) [5; 7]. На рисунке 4 цифрами обозначены: 1 – кварцевый песок, прошедший двухкратную обработку НТНП и необработанной водой затворения; 2 — на основе обработанной и необработанной воды затворения; 3 — кварцевый песок, прошедший двухкратную обработку НТНП; 4 — портландцемент, прошедший обработку НТНП;

Рис. 4. Динамика набора прочности мелкозернистого бетона **Fig. 4.** Dynamics of strength gain of fine-grained concrete

5 — контрольный состав. Как упоминалось во введении, на эксплуатационные свойства цементных композитов значительно влияют состав и размер фибры. В качестве воды затворения в исследуемых цементных составах использовалась смесь обычной и плазмомодифицированной воды в пропорции 1:1, при этом водоцементное отношение было установлено на уровне 0,4 %, что значительно увеличивает прочность при изгибе полученных композитов.

Важным критерием эффективности цементных составов является их трещиностойкость. В работах [12; 13] косвенную оценку трещиностойкости предлагают проводить по отношению $R_{b\ell}/R_b$ (R_{bt} — прочность при растяжении, R_b — прочность при сжатии). В таблице 2 представлены результаты влияния вида фибры на соотношение $R_{b\ell}/R_b$. Наибольшее значение указанного показателя наблюдается при применении стальной фибры (показатель возрастает на 40 %), а при использовании полипропиленовой фибры он возрастает на 27 %.


Особый интерес вызывает определение влияния используемых типов фибр на ударную прочность строительных композитов (рисунок 5). Из представленных данных видно, что дисперсное армирование повышает ударную прочность цементных композитов. Практический интерес имеют абсциссы зависимостей $A = f(\mu)$, при которых ударная прочность композитов имеет максимальное значение и её относительное увеличение. Установлено, что полипропиленовая и металлическая фибры повышают ударную вязкость строительных композитов до 1,7 и 2,6 раза соответственно.

Заключение

Обработка сырьевых компонентов в низкотемпературной неравновесной плазме оказывает влияние на струк-

Вид фибры	Диаметр и д	R_{bt} , R_{b}	
	d, мм	L, mm	
Контрольный состав	-	-	0,131
Металлическая	0,3	15	0,183
Полипропиленовая	20·10 ⁻³	6	0,167

Табл. 2. Соотношение $R_{b\ell}/R_{b}$ для исследуемых ремонтных составов **Таb. 2.** $R_{b\ell}/R_{b}$ ratio for the studied repair compositions

Рис. 5. Влияние разных типов фибр на показатели ударной вязкости

Fig. 5. Effect of different types of fibers on impact strength

турообразование композиционных материалов, повышая их степень гидратации: в цементном камне наблюдается повышение количества портландита при одновременном снижении содержания исходных фаз.

Механомагнитная активация портландцемента приводит к повышению количества продуктов гидратации цементного камня, закономерно уменьшая количество исходных минералов портландцементного клинкера, что благоприятно сказывается на повышении показателя его степени гидратации. Влияние активации на структуру цементного камня выражается в формировании кристал-

СПИСОК ЛИТЕРАТУРЫ

- Mortar type influence on mechanical performance of repaired reinforced concrete beams / O. G. Teixeira, R. H. Geraldo, F. G. Da Silva, J. P. Gonçalves // Construction and Building Materials. – 2019. – Vol. 217. – Pp. 372 – 383.
- 2. Strengthening effect of concrete beams using ultra-rapid-hardening fiber-reinforced mortar under flexure / Booki Ch., Taekgeun O., Jang Y. S., Segunkyun L. // Construction and Building Materials 2022. Vol. 352. Art. 129064.
- Bond performance between substrate concrete and repair mortar. Effect of carbon fibre and expansive agent / Sh. Feng, H. Xiao, R. Zhang, Ch. Yang. – DOI 10.1016/ j.conbuildmat.2020.118830 // Construction and Building Materials. – 2020. – Vol. 250. – Art. 118830.
- Raza, A. Digital image processing for precise evalution of concrete crack repair using bio-inspired strategies / A. Raza, R.A.Khushnood. – DOI 10.1016/j.conbuildmat.2022.128863 // Construction and Building Materials. – 2022. – Vol. 350. – Art. 128863.
- Efficient complex activation of Portland cement through processing it in the vortex layer machine / R. A. Ibragimov, E. V. Korolev, T. R. Deberdeev, V. V. Leksin. – DOI 10.1002/ suco.201800008 // Structural Concrete. – 2019. – Vol. 20, Iss. 2. – Pp. 851–859.
- 6. Ibragimov, R. A. Influence of electromagnetic field on characteristics of crushed materials / R. A. Ibragimov, E. V. Korolev. DOI 10.34910/MCE.114.8 // Magazine of Civil Engineering. 2022. Vol. 114 (6). Art. 11408.
- Structural parameters and properties of fine-grained concrete on Portland cement, activated with plasticizers in vortex layer apparatuses / R. A. Ibragimov, E. V. Korolev, T. R. Deberdeev, V. V. Leksin // ZKG International. – 2018. – Vol. 71, No. 5. – Pp. 28–35.
- 8. Nalbandyan, G. V. Modification of components of fine-grained
- Mortar type influence on mechanical performance of repaired reinforced concrete beams / O. G. Teixeira, R. H. Geraldo, F. G. Da Silva, J. P. Gonçalves // Construction and Building Materials. 2019. Vol. 217. Pp. 372 383.

СТРОИТЕЛЬНОЕ ПРОИЗВОДСТВО № 4 (52)'2024

лических новообразований со значительно меньшей дисперсностью, что способствует образованию более мелких капилляров в цементном камне. Плазменная обработка зёрен кварцевого песка приводит к аморфизации поверхности частиц SiO₂, а механомагнитная — к повышению степени шероховатости.

Все эти факторы в среднем способствуют повышению физико-механических свойств цементных составов на 20 %. Дисперсное армирование цементных составов значительно улучшает эксплуатационные свойства цементных композитов. Так, трещиностойкость возрастает на 40 % при использовании металлической фибры и на 27 % при применении полипропиленовой фибры. Разработанные дисперсно-армированные цементные составы, полученные при активации (НТНП или в АВС), обладают высокими эксплуатационными свойствами.

Благодарности: Работа выполнена за счёт гранта Академии наук Республики Татарстан, предоставленного молодым кандидатам наук (постдокторантам) с целью защиты докторской диссертации, выполнения научно-исследовательских работ, а также выполнения трудовых функций в научных и образовательных организациях Республики Татарстан в рамках государственной программы Республики Татарстан «Научно-технологическое развитие Республики Татарстан».

- concretes by low-temperature nonequilibrium plasma / G. V. Nalbandyan, V. G. Soloviev, V. A. Ushkov // Materials Today: Proceedings. 2019. Vol. 19, Part 5. Pp. 1841–1844.
- Mechanical, chemical and hydrothermal activation for waste glass reinforced cement / J. Sun, Y. Wang, Sh. Liu, A. Dehghan. – DOI 10.1016/j.conbuildmat.2021.124361 // Construction and Building Materials. – 2021. – Vol. 301. – Art. 124361.
- 10. Allahverdi, A. Chemical activation of slag-blended Portland cement / A. Allahverdi, A. Maleki, M. Mahinroosta. DOI https://doi.org/10.1016/j.jobe.2018.03.004 // Journal of Building Materials. 2018. Vol. 18. Pp. 76–83.
- 11. Fedosov, S. V. Research of regularity of a structure formation in the cement stone mixed by the mechanoactivated water with the polyvinyl acetate admixture / S. V. Fedosov, M. B. Akulova, T. E. Slizneva // Academia. Architecture and Construction. 2017. No. 2. Pp. 117–122.
- 12. Gorlenko, N. P. Initiation of structure formation processes in cement systems by magnetic field / N. P. Gorlenko, Yu. S. Sarkisov, N. V. Subbotina // Materials Science. 2018. No. 8. Pp. 38–42.
- Abbas, I. S. Development and characterization of eco- and userfriendly grout production via mechanochemical activation of geopolymer / I. S. Abbas, M. H. Abed, H. Canakci // Journal of Building Engineering. – 2022. – Vol. 63, Part A. – Art. 105336.
- 14. Buldyzhova, E. N. Modification in low-temperature nonequilibrium plasma of silicate-containing fillers for building composites / E. N. Buldyzhova, P. S. Korotkova // Perspectives of science. 2020. No. 3 (126). Pp. 53–57.
- Effect of nanomaterials inclusion on sustainability of cement-based concretes: A comprehensive review / A. M. Onaizi, G. F. Huseien, N. H. A. Sh. Lim, M. Amran, M. Samadi. DOI 10.1016/j.conbuildmat.2021.124850 // Construction and Building Materials. 2021. Vol. 306. Art. 124850.
- Strengthening effect of concrete beams using ultra-rapidhardening fiber-reinforced mortar under flexure / Booki Ch., Taekgeun O., Jang Y. S., Segunkyun L. // Construction and Building Materials – 2022. – Vol. 352. – Art. 129064.
- 3. Bond performance between substrate concrete and re-

4

- terials. 2020. Vol. 250. Art. 118830.
- 4. Raza, A. Digital image processing for precise evalution of concrete crack repair using bio-inspired strategies / A. Raza, R.A. Khushnood. – DOI 10.1016/j.conbuildmat.2022.128863// Construction and Building Materials. - 2022. - Vol. 350. -Art. 128863.
- 5. Efficient complex activation of Portland cement through processing it in the vortex layer machine / R. A. Ibragimov, E. V. Korolev, T. R. Deberdeev, V. V. Leksin. - DOI 10.1002/ suco.201800008 // Structural Concrete. - 2019. - Vol. 20, Iss. 2. - Pp. 851-859.
- 6. Ibragimov, R. A. Influence of electromagnetic field on characteristics of crushed materials / R. A. Ibragimov, E. V. Korolev. -DOI 10.34910/MCE.114.8 // Magazine of Civil Engineering. -2022. - Vol. 114 (6). - Art. 11408.
- Structural parameters and properties of fine-grained concrete on Portland cement, activated with plasticizers in vortex layer apparatuses / R. A. Ibragimov, E. V. Korolev, T. R. Deberdeev, V. V. Leksin // ZKG International. - 2018. - Vol. 71, No. 5. -Pp. 28-35.
- 8. Nalbandyan, G. V. Modification of components of fine-grained concretes by low-temperature nonequilibrium plasma / G. V. Nalbandyan, V. G. Soloviev, V. A. Ushkov // Materials Today: Proceedings. - 2019. - Vol. 19, Part 5. - Pp. 1841-1844.
- 9. Mechanical, chemical and hydrothermal activation for waste glass reinforced cement / J. Sun, Y. Wang, Sh. Liu, A. Dehghan. -

- DOI 10.1016/j.conbuildmat.2021.124361 // Construction and Building Materials. - 2021. - Vol. 301. - Art. No. 124361.
- 10. Allahverdi, A. Chemical activation of slag-blended Portland cement / A. Allahverdi, A. Maleki, M. Mahinroosta. – DOI https:// doi.org/10.1016/j.jobe.2018.03.004 // Journal of Building Materials. - 2018. - Vol. 18. - Pp. 76-83.
- 11. Fedosov, S. V. Research of regularity of a structure formation in the cement stone mixed by the mechanoactivated water with the polyvinyl acetate admixture / S. V. Fedosov, M. B. Akulova, T. E. Slizneva // Academia. Architecture and Construction. -2017. - No. 2. - Pp. 117-122.
- 12. Gorlenko, N. P. Initiation of structure formation processes in cement systems by magnetic field / N. P. Gorlenko, Yu. S. Sarkisov, N. V. Subbotina // Materials Science. - 2018. - No. 8. -Pp. 38-42.
- 13. Abbas, I. S. Development and characterization of eco- and user-friendly grout production via mechanochemical activation of geopolymer / I. S. Abbas, M. H. Abed, H. Canakci // Journal of Building Engineering. - 2022. - Vol. 63, Part A. - Art. 105336.
- 14. Buldyzhova, E. N. Modification in low-temperature nonequilibrium plasma of silicate-containing fillers for building composites / E. N. Buldyzhova, P. S. Korotkova // Perspectives of science. - 2020. - No. 3 (126). - Pp. 53-57.
- 15. Effect of nanomaterials inclusion on sustainability of cement-based concretes: A comprehensive review / A. M. Onaizi, G. F. Huseien, N. H. A. Sh. Lim, M. Amran, M. Samadi. - DOI 10.1016/j.conbuildmat.2021.124850 // Construction and Building Materials. - 2021. - Vol. 306. - Art. 124850.

DOI: 10.54950/26585340_2024_4_46

Основные аспекты производительности труда при капитальном ремонте в Арктической зоне

Basic Aspects of Labor Productivity in Overhaul in the Arctic Zone

Фатуллаев Рустам Сейфуллаевич

УДК 69.05

Кандидат технических наук, доцент, доцент кафедры «Технологии и организация строительного производства», старший научный сотрудник Научно-образовательного центра «Конструкции, технологии и организация строительства», ФГБОУ ВО «Национальный исследовательский Московский государственный строительный университет» (НИУ МГСУ), Росиия, 129337, Москва, Ярославское шоссе, 26, FatullaevRS@mqsu.ru

Fatullaev Rustam Seifullayevich

Candidate of Engineering Sciences, Docent, Associate Professor of the Department of Technologies and Organization of Construction Production, Research Fellow of the Scientific and Educational Center «Constructions, Technologies and Organization of Construction», National Research Moscow State University of Civil Engineering (NRU MGSU), Russia, 129337, Moscow, Yaroslavskoe shosse, 26, FatullaevRS@mgsu.ru

Боровкова Анастасия Евгеньевна

Аспирант кафедры «Технологии и организация строительного производства», инженер-исследователь Молодёжной лаборатории «Организационно-технические системы использования искусственного интеллекта в строительстве», ФГБОУ ВО «Национальный исследовательский Московский государственный строительный университет» (НИУ МГСУ), Россия, 129337, Москва, Ярославское шоссе, 26, anastasik24@mail.ru

Borovkova Anastasia Evgenievna

Postgraduate student of the Department of Technologies and Organization of Construction Production, Research Engineer at the Youth Laboratory «Organizational and Technical Systems for the use Artificial Intelligence in Construction», National Research Moscow State Construction University of Civil Engineering (NRU MGSU), Russia, 129337, Moscow, Yaroslavskoe shosse, 26, anastasik24@mail.ru

Кулаков Александр Сергеевич

Бакалавр кафедры «Строительная и техническая механика», ФГБОУ ВО «Национальный исследовательский Московский государственный строительный университет» (НИУ МГСУ), Россия, 129337, Москва, Ярославское шоссе, 26, sasha.kulakov.2003@yandex.ru

Kulakov Alexander Sergeevich

Bachelor of the Department of Construction and Technical Mechanics, National Research Moscow State Construction University of Civil Engineering (NRU MGSU), Russia, 129337, Moscow, Yaroslavskoe shosse, 26, sasha.kulakov.2003@yandex.ru

Галаган Александр Максимович

Бакалавр кафедры «Строительная и техническая механика», ФГБОУ ВО «Национальный исследовательский Московский государственный строительный университет» (НИУ МГСУ), Россия, 129337. Москва, Ярославское шоссе, 26. aleks4ndrgalagan@vandex.ru

Galagan Alexander Maksimovich

Bachelor of the Department of Construction and Technical Mechanics, National Research Moscow State Construction University of Civil Engineering (NRU MGSU), Russia, 129337, Moscow, Yaroslavskoe shosse, 26, aleks4ndrgalagan@yandex.ru

Аннотация. Целью данного исследования были выявление и описание факторов, влияющих на производительность труда при проведении капитального ремонта в Арктической зоне. Исследование рассматривает комплекс взаимосвязанных факторов, включающих как объективные (климатические условия, сложная логистика, неразвитая инфраструктура, качество материалов и оборудования), так и субъективные (квалификация персонала, условия труда, координация и планирование). В ходе исследования был применён экспертный метод с кодированием факторов, который позволил выявить наиболее значимый фактор.

Практическая значимость исследования заключается в возможности использования полученных результатов для повышения эффективности проведения капитального ремонта в суровых условиях Арктики. Внедрение предложенных мероприятий позволит сократить сроки выполнения работ, снизить производственные издержки и повысить качество выполняемых работ. Особое внимание следует уделить развитию системы профессиональной подготовки персонала и совершенствованию методов организации производственных процессов с учётом

Abstract. The purpose of this study was to identify and describe the factors affecting labor productivity in major repairs in the Arctic zone. The study considers a set of interrelated factors including both objective (climatic conditions, complex logistics, underdeveloped infrastructure, quality of materials and equipment) and subjective (personnel qualifications, working conditions, coordination and planning). In the course of the study, the expert method with coding of factors was applied, which made it possible to identify the most significant factor.

The practical significance of the study lies in the possibility of using the results obtained to improve the efficiency of capital repairs in the harsh conditions of the Arctic. Implementation of the proposed measures will reduce the time of work, reduce production costs and improve the quality of work performed. Special attention should be paid to the development of the system of professional training of personnel and improvement of methods of organization of production processes taking into account the specifics of Arctic conditions.

The most significant factors that will require minimal costs

специфики арктических условий.

Наиболее значимыми факторами, которые требуют минимальных затрат при внедрении и существенно повышают производительность труда в кратчайшие сроки, являются координация и планирование работы в организации, квалификация персонала. Результаты исследования указывают на внедрение технологии бережливого производства с применением методов: оптимизация технологий и методов производства работ, выявление потерь времени при капитальном ремонте, определение их источников, внедрение параллельности работ и соединение отдельных технологических операций.

СТРОИТЕЛЬНОЕ ПРОИЗВОДСТВО № 4 (52)'2024

В перспективе рекомендуется проведение дополнительных исследований по оценке экономической эффективности внедряемых мероприятий и разработке детальных методических рекомендаций по их реализации. Также важным направлением дальнейшей работы является создание системы мониторинга и контроля результативности внедряемых изменений.

Ключевые слова: капитальный ремонт, производительность труда, факторы производительности труда, Арктическая зона, экспертный метод, коэффициенты весомости.

during implementation and significantly increase labor productivity in the shortest possible time are: coordination and planning of work in the organization, qualification of personnel. The results of the study indicate the introduction of lean production technology with the use of methods: optimization of technologies and methods of work production, identification of time losses during overhaul, determination of their sources, introduction of parallelism of work and connection of separate technological operations.

In the future it is recommended to carry out additional research on estimation of economic efficiency of the implemented measures and development of detailed methodical recommendations on their realization. Also, an important area for further work is the creation of a system for monitoring and controlling the effectiveness of the implemented changes. Keywords: overhaul, labor productivity, labor productivity factors, Arctic zone, expert method, weighting coefficients.

Keywords: overhaul, labor productivity, labor productivity factors, Arctic zone, expert method, weighting coefficients.

Ввеление

Арктическая зона представляет собой регион с экстремальными климатическими условиями, которые существенно влияют на все аспекты промышленной и строительной деятельности. Проведение капитального ремонта в таком регионе сопряжено с рядом сложностей, включая низкие температуры, полярную ночь, труднодоступность районов, неразвитую инфраструктуру. В таких условиях повышение производительности труда становится критически важным для успешной реализации проектов, сокращения сроков работ и снижения издержек [1-4].

Актуальность данной темы обусловлена экстремальными климатическими условиями региона, которые существенно усложняют проведение строительных и ремонтных работ. Важно отметить, что простои при выполнении строительно-монтажных работ, вызванные неблагоприятными погодными условиями, ведут к значительным финансовым потерям и, зачастую, влияют

на безопасность эксплуатации объектов [5-8]. Более того, сложности доставки материалов и оборудования на объекты и дефицит высококвалифицированного персонала требуют разработки комплексных решений, которые позволят эффективно управлять строительными процессами в таких условиях.

Научное исследование нацелено на выявление факторов, влияющих на производительность труда при проведении капитального ремонта в Арктической зоне. Внедрение и применение на практике предложенных решений будут способствовать более эффективному освоению Арктической зоны, повышению безопасности и обеспечению устойчивого развития стратегически важного региона [9-13].

Материалы и методы

Производительность труда является показателем, характеризующим результативность труда. Производительность труда можно измерить количеством продукции,

№ пп.	Наименование фактора	Описание
1	Климатические условия	Низкие температуры, сильные ветра и снегопады снижают работоспособность сотрудников, увеличивают риск травматизма, требуют дополнительных затрат на тепло-ветрозащиту мест проведения работ и отдыха, применение оборудования, пригодного для подобных условий.
2	Условия труда	В арктическом регионе существуют длительные периоды полярной ночи и полярного дня, что влияет на психологическое состояние работников, качество выполняемой ими работы и их производительность. Поэтому обеспечение необходимых условий труда и безопасности работников в сложных климатических условиях требует дополнительных затрат и контроля выполняемых работ. Кроме того, предъявляются особые требования к одежде и средствам индивидуальной защиты.
3	Логистика	Труднодоступность мест проведения работ, высокие транспортные расходы, слабо развитая либо отсутствующая транспортная инфраструктура, отсутствие подъездных путей и длительные сроки доставки грузов и оборудования увеличивают стоимость проектов, требуют особого построения и планирования логистических цепочек.
4	Инфраструктура	Отсутствие или недостаток необходимой инфраструктуры (дорог, жилья, транспорта) затрудняет доступ к месту проведения работ, доставку материалов, организацию мест проживания сотрудников и их быта.
5	Квалификация персонала	Работа в суровых условиях Арктики требует от специалистов высокой компетенции, знаний и навыков. Работники должны быть подготовлены и обучены производству работ в специфических условиях севера, иначе эффективность их труда критически снижается, а проект становится убыточным.
6	Оборудование и технологии	Низкие температуры требуют применения специального оборудования и технологий, предназначенных для работы в экстремальных условиях, внедрение новых технологий с использованием ИИ.
7	Качество материалов и изделий	Необходимы материалы и изделия со специальными свойствами для использования при отрицательных температурах, а также высокие требования к контролю качества их применения.
8	Координация и планирование	При организации рабочего процесса необходимы чёткое планирование и координация работ, так как работа ограничена световым днём, либо правильное планирование и организация освещения территорий и мест производства работ.

Табл. 1. Факторы, влияющие на производительность труда в условиях Арктики **Таb. 1.** Factors affecting labor productivity in the Arctic conditions

выпущенной работником за единицу времени. В строительной отрасли данный показатель измеряется трудоёмкостью и выработкой [14].

Исходя из этого, по мнению авторов, необходимо создать методологию, основанную на изучении факторов, влияющих на производительность труда при проведении капитального ремонта в Арктической зоне, оптимизацию процессов и методов производства работ путём «сглаживания» временных и технологических простоев.

Для достижения поставленной цели и рассмотрения возможности внедрения методов бережливого производства были поставлены следующие задачи:

- Сформировать и описать факторы, влияющие на производительность труда в арктических условиях.
- Провести экспертный опрос и выявить наиболее значимые факторы, влияющие на производитель-

ность труда при проведении капитального ремонта в Арктической зоне.

На данном этапе рассмотрены и описаны факторы, влияющие на производительность труда при проведении капитального ремонта в Арктике (таблица 1).

Для выбора факторов, влияющих на производительность труда при проведении капитального ремонта в Арктической зоне, и определения их весомости применялся экспертный метод.

Результаты

Кодирование факторов, влияющих на производительность труда при проведении капитального ремонта в Арктической зоне:

- Квалификация персонала Х.;
- Климатические условия X_{2} ;
- Оборудование и технологии X₃;
- Логистика X₄;

Эксперт	X ₁	X ₂	X ₃	X₄	X₅	X ₆	X ₇	X_{ε}	∑R _{ji}	t _j
1	2	3	4	5	6	7	8	9	10	
1	1,5	8	3	4	6	7	5	1,5	36	0,5
2	2	8	3,5	3,5	7	6	5	1	36	0,5
3	2	8	3	4	7	5	6	1	36	0
4	1,5	8	3	4	6,5	6,5	5	1,5	36	0,5
5	1	7,5	3	4	7,5	6	5	2	36	0,5
6	2	8	3	4	6	7	5	1	36	0
Si	10	47,5	18,5	23,5	40	37,5	31	8	216	2
$S_i - \overline{S}$	-17	20,5	-8,5	-3,5	13	10,5	4	19	-	
$(S_i - \overline{S})^2$	289	420	72,3	12,3	169	110	16	361	1540	
m*n - S;	38	0,5	29,5	24,5	8	10,5	17	40	168	
J_{i}	0,226	0,003	0,176	0,146	0,047	0,062	0,101	0,238	1	

Табл. 2. Матрица рангов для факторов, влияющих на производительность труда при проведении капитального ремонта **Таb. 2.** Ranking matrix for factors affecting labor productivity during major repairs

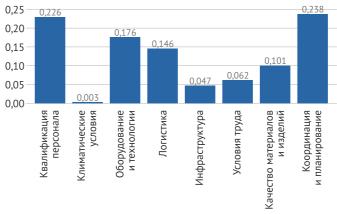


Рис. 1. Диаграмма распределения коэффициентов весомости для факторов, влияющих на производительность труда Fig. 1. Diagram of distribution of weighting coefficients for factors affecting labor productivity

- Инфраструктура X₅;
- Условия труда X₆;
- Качество материалов и изделий $-X_7$;
- Координация и планирование X_o.

На первом этапе проводился опрос экспертов, число которых должно быть не меньше 6, была составлена анкета опроса. В качестве экспертов были выбраны специалисты из ведущих организаций, чья деятельность связана с проведением капитального ремонта. В анкете был поставлен следующий вопрос: внедрение и/или оптимизация каких факторов потребует минимальных затрат со стороны организации, но при этом существенно повысит производительность труда в кратчайшие сроки? Экспертам предлагалось дать ранговую оценку по заранее определённым факторам, представленным в таблице 2.

В анкете наиболее значимый показатель обозначен R=1, наименее значимый как R=8. Экспертами проводилось ранжирование — размещение факторов по рангу (категории значимости), определённым экспертом. Вклад каждого фактора оценивался по величине ранга с учётом их предполагаемого влияния на производительность труда при проведении капитального ремонта.

Сумма рангов у каждого эксперта по горизонтали должна быть постоянной:

$$\sum R_{ji} = 0.5n(n+1) = 36,$$
 (1)

где n — число факторов.

Полученные по всем анкетам ранги занесены в сводную таблицу – матрицу рангов (таблица 2).

На втором этапе проводится обработка экспертных оценок с определением их согласованности и значимости.

Согласованность мнений экспертов определялась с помощью коэффициента конкордации W:

$$W = \frac{\sum (S_i - \overline{S})^2}{\frac{1}{12} m^2 (n^3 - n) - m \sum_{i=0}^n T_i} = \frac{1540}{\frac{1}{12} 6^2 (8^3 - 8) - 6 * 2} = 0,98, \quad (2)$$

где S — сумма квадратов отклонений;

T. — показатель одинаковости;

m – число опрашиваемых;

n — число факторов.

Таким образом, коэффициент конкордации равен W=0.98, близок к 1, следовательно, оценки экспертов имеют высокую согласованность.

Использовать коэффициент конкордации можно после оценки его значимости.

СТРОИТЕЛЬНОЕ ПРОИЗВОДСТВО № 4 (52)'2024

Значимость коэффициента конкордации W определялась с помощью χ^2 распределения (распределения Пирсона) с числом степеней свободы f = k - 1:

$$\chi_R^2 = W * m(n-1) = 0.98 * 6(8-1) = 41.2.$$
 (3)

Так как $\chi_{\scriptscriptstyle R}^2=41,2>\chi_{\scriptscriptstyle T}^2=14,1$, следовательно, коэффициент конкордации W значим с вероятностью $P_{\scriptscriptstyle A}=0.95$.

Коэффициент весомости каждого показателя определяют по формуле:

$$J_{i} = \frac{m * n - S_{i}}{0.5mn(n-1)}.$$
 (4)

На рисунке 1 представлена диаграмма распределения коэффициентов весомости для факторов, влияющих на производительность труда при капитальном ремонте.

Для определения существенно значимых факторов, влияющих на производительность труда при капитальном ремонте, необходимо, чтобы выполнялось неравенство:

$$J_i > \frac{1}{n} = 0,125,$$
 (5)

где J_i — коэффициенты весомости факторов, влияющих на производительность труда;

n — количество факторов.

Следовательно, наиболее значимыми факторами (таблица 1), для которых выполняется неравенство (5), являются:

 X_{i} — квалификация персонала;

 X_3^1 – оборудование и технологии;

 X_{4} – логистика;

 X_{\circ} – координация и планирование.

Коэффициенты весомости существенно значимых факторов определяются по формуле:

$$J_{oi} = \frac{J_i}{\sum Ji}.$$
 (6)

Коэффициенты весомости наиболее значимых факторов, влияющих на производительность труда при капитальном ремонте, представлены на рисунке 2.

Из рисунка 2 видно, что существенно значимыми факторами, влияющими на производительность труда при капитальном ремонте в Арктической зоне, являются: логистика, оборудование и технологии, квалификация персонала, координация и планирование. В пределах погрешности 10 % наибольшие значения коэффициентов весомости получены для следующих факторов: координация и планирование, квалификация персонала.

Заключение

Исследование производительности труда при проведении капитального ремонта многоквартирных жилых домов, расположенных в Арктической зоне, является важным шагом к повышению эффективности и качества

Рис. 2. Диаграмма распределения коэффициентов весомости для существенно значимых факторов

Fig. 2. Diagram of distribution of weighting coefficients for significantly significant factors

выполнения работ. В результате работы были определены и описаны факторы, влияющие на производительность труда при капитальной ремонте в Арктической зоне: климатические условия, сложная логистика, неразвитая инфраструктура, качество материалов и оборудования, квалификация персонала, условия труда, координация и планирование. Проведён экспертный опрос и выявлено, что к наиболее значимым факторам, которые требуют минимальных затрат при внедрении и существенно по-

вышают производительность труда в кратчайшие сроки, относятся координация и планирование работы в организации, квалификация персонала. Результаты исследования указывают на необходимость внедрения методологии бережливого производства: оптимизации процессов с сокращением потери времени на технологические операции, внедрение параллельности работ и соединение отдельных технологических операций.

СПИСОК ЛИТЕРАТУРЫ

- Лапидус, А.А. Метод повышения производительности труда в строительстве / А.А. Лапидус // Вестник МГСУ. 2024. № 19 (8). С. 1365–1372. URL: https://doi.org/10.22227/1997-0935.2024.8.1365-1372.
- 2. Сальников, К. Е. Сокращение продолжительности строительства в результате роста производительности труда / К.Е.Сальников // Финансы и управление. 2021. № 4. С. 38–49. URL: https://doi.org/10.25136/2409-7802.2021.4.34480.
- 3. Киевский, Л. В. Градостроительство и производительность труда / Л. В. Киевский, А. С. Сергеев // Жилищное строительство. 2015. № 9. С. 55 59.
- Лапидус, А. А. Организационно-технологическая платформа строительства / А. А. Лапидус // Вестник МГСУ. – 2022. – Т. 17, № 4. – С. 516–524. – URL: https://doi.org/10.22227/1997-0935.2022.4.516-524.
- 5. Фатуллаев, Р. С. Оценка факторов, влияющих на эффективность организационно-технологических решений при проведении капитального ремонта в домах с разной формой собственности / Р. С. Фатуллаев, С. Р. Айдаров // Наука и бизнес: пути развития. 2019. № 12 (102). С. 119–122.
- 6. Селезнёва, А. К. Основные виды работ по капитальному ремонту многоквартирных жилых домов / А. К. Селезнёва, Ю. О. Толстых, Т. В. Учинина // Современные проблемы науки и образования. 2014. № 5. С. 438. URL: https://science-education.ru/ru/issue/view?id=119.
- 7. Зарубежный и российский опыт проведения капитального ремонта жилищного фонда с учётом энергоэффективных мероприятий / В. Я. Мищенко, Е. П. Горбанева, К. С. Севрюкова. DOI 10.25987/VSTU.2020.57.1.006 // Научный журнал строительства и архитектуры. 2020. № 1 (67). С. 62 73.
- 8. Korol, O. A. Development of the methodology of calendar planning in the system of organizational and technological preparation of capital repair of multi-apartment residential houses / O. A. Korol. DOI 10.1088/1742-6596/1425/1/012086 // Journal of Physics: Conference

- Series / International Scientific Conference on Modelling and Methods of Structural Analysis 2019, MMSA 2019, Москва, 13–15 ноября, 2019. Москва, 2020. Т. 1425. Ст. 012086.
- 9. Ширшиков, Б. Ф. Влияние потребительского качества жилищного фонда на стоимость капитального ремонта / Б. Ф. Ширшиков, Р. С. Фатуллаев // Промышленное и гражданское строительство. 2015. № 7. С. 60–63.
- 10. Производительность труда в регионах Российской Федерации: сущность, факторы и резервы роста / Н. В. Трофимова, Э. Р. Мамлеева, М. Ю. Сазыкина, Г. Ф. Шайхутдинова. DOI 10.17122/2541-8904-2022-2-40-111-121 // Вестник УГНТУ. Наука, образование, экономика. Серия: Экономика. 2022. № 2 (40). С. 111–121.
- 11. Красновский, Б. М. Организационно-технологический потенциал решений строительного объекта инструмент повышения эффективности организации строительства / Б. М. Красновский. DOI 10.54950/26585340_2020_2_140 // Строительное производство. 2020. № 2. С. 140–143.
- 12. Fatullaev, R. Modeling and assessment of a multi-apartment residential house with a planned overhaul / R. Fatullaev. DOI 10.1051/e3sconf/201911002157 // E3S Web of Conferences: 2018 International Science Conference on Business Technologies for Sustainable Urban Development, SPbWOSCE 2018, St. Petersburg, 10–12 декабря 2018 года. Санкт-Петербург, 2019. Т. 110. Ст. 02157.
- An integrated assessment of the municipal buildings' use including sustainability criteria / E. K. Zavadskas, Z. Turskis, J. Šliogerienė, T. Vilutienė. – DOI 10.1016/j.scs.2021.102708 // Sustainable Cities and Society. – 2021. – Vol. 67, Iss. 1. – Art. 102708.
- 14. Development of mceliece modified asymmetric crypto-code system on elliptic truncated codes / S. Yevseiev, Kh. Rzayev, O. Korol, Z. Imanova. DOI 10.15587/1729-4061.2016.75250 // Eastern-European Journal of Enterprise Technologies. 2016. Vol. 4, No. 9 (82). Pp. 18–26.

REFERENCES

- 1. Lapidus, A. A. Metod povysheniya proizvoditel'nosti truda v stroitel'stve [Method of increasing labor productivity in construction] / A. A. Lapidus // Vestnik MGSU [MSCU Bulletin]. 2024. No. 19 (8). Pp. 1365-1372. URL: https://doi.org/10.22227/1997-0935.2024.8.1365-1372.
- Salnikov, K. E. Sokrashhenie prodolzhitel'nosti stroitel'stva v rezul'tate rosta proizvoditel'nosti truda [Reduction of construction duration as a result of labor productivity growth] / K. E. Salnikov // Finansy i upravlenie [Finance and Management]. 2021. No. 4. Pp. 38–49. URL: https://doi.org/10.25136/2409-7802.2021.4.34480.
- 3. Kievskiy, L. V. [Urban planning and labor productivity] / L. V. Kievskiy, A. S. Sergeev // Zhilishchestvennoe stroitelstvo [Housing Construction]. 2015. No. 9. Pp. 55 59.
- 4. Lapidus, A. A. Organizatsionno-tekhnologicheskaya platforma stroitel'stva [Organizational and technological platform of construction] / A. A. Lapidus // Vestnik MSCU [Bulletin of MGSU]. 2022. Vol. 17, No. 4. Pp. 516–524. URL: https://doi.org/10.22227/1997-0935.2022.4.516-524.
- 5. Fatullaev, R. S. Otsenka faktorov, vliyayushhikh na ehffek-

- tivnost' organizatsionno-tekhnologicheskikh reshenij pri provedenii kapital'nogo remonta v domakh s raznoj formoj sobstvennosti [Evaluation of factors affecting the efficiency of organizational and technological solutions in carrying out capital repairs in houses with different form of ownership] / R. S. Fatullaev, S. R. Aidarov // Nauka i biznes: puti razvitiya [Science and business: ways of development]. 2019. No. 12 (102). Pp. 119–122.
- Selezneva, A. K. Osnovnye vidy rabot po kapital'nomu remontu mnogokvartirnykh zhilykh domov [Main types of works on capital repair of apartment residential buildings] / A. K. Selezneva, Yu. O. Tolstykh, T. V. Uchinina // [Modern problems of science and education]. – 2014. – No. 5. – P. 438. – URL: https:// science-education.ru/ru/issue/view?id=119.
- Mishchenko, V. Ya. Zarubezhnyj i rossijskij opyt provedeniya kapital'nogo remonta zhilishhnogo fonda s uchyotom ehnergoehffektivnykh meropriyatij [Foreign and Russian experience of capital repair of housing stock taking into account energy-efficient measures] / V. Ya. Mishchenko, E. P. Gorbaneva, K. S. Sevryukova. – DOI 10.25987/VSTU.2020.57.1.006 // Nauchnyj zhurnal stroitel'stva i arkhitektury [Scientific Jour-

- nal of Construction and Architecture]. 2020. No. 1 (67). Pn 62–73
- 8. Korol, O.A. Development of the methodology of calendar planning in the system of organizational and technological preparation of capital repair of multi-apartment residential houses / O. A. Korol. DOI 10.1088/1742-6596/1425/1/012086 // Journal of Physics: Conference Series / International Scientific Conference on Modelling and Methods of Structural Analysis 2019, MMSA 2019, Moscow, November 13-15, 2019. 2020. Vol. 1425. Art. 012086.
- 9. Shirshikov, B. F. Vliyanie potrebitel'skogo kachestva zhilishhnogo fonda na stoimost' kapital'nogo remonta [Influence of the consumer quality of housing stock on the cost of capital repair] / B. F. Shirshikov, R. S. Fatullaev // Promyshlennoe i grazhdanskoe stroitel'stvo [Industrial and civil construction]. 2015. No. 7. Pp. 60–63.
- Proizvoditel'nost' truda v regionakh Rossijskoj Federatsii: sushnost', faktory i rezervy rosta [Labor productivity in the regions of the Russian Federation: essence, factors and growth reserves] / N. V. Trofimova, E. R. Mamleeva, M. Y. Sazykina, G. F. Shaykhutdinova. DOI 10.17122/2541-8904-2022-2-40-111-121 // Vestnik UGNTU. Nauka, obrazovanie, ehkonomika. Seriya: Ehkonomika [USNTU Bulletin. Science, education, economics. Series: Economics]. 2022. No. 2 (40). Pp. 111–121.
- 11. Krasnovskiy, B. M. Organizatsionno-tekhnologicheskij potent-

СТРОИТЕЛЬНОЕ ПРОИЗВОДСТВО № 4 (52)'2024

- sial reshenij stroitel'nogo ob"ekta instrument povysheniya ehffektivnosti organizatsii stroitel'stva [Organizational and technological potential of construction object solutions a tool to improve the efficiency of construction organization] / B. M. Krasnovsky. DOI 10.54950/26585340_2020_2_140 // Stroitel'noe proizvodstvo [Construction production]. 2020. No. 2. Pp. 140–143.
- 12. Fatullaev, R. Modeling and assessment of a multi-apartment residential house with a planned overhaul / R. Fatullaev. DOI 10.1051/e3sconf/201911002157 // E3S Web of Conferences: 2018 International Science Conference on Business Technologies for Sustainable Urban Development, SPbWOSCE 2018, St. Petersburg, December 10-12, 2018. St. Petersburg, 2019. Vol. 110. Art. 02157.
- 13. An integrated assessment of the municipal buildings' use including sustainability criteria / E. K. Zavadskas, Z. Turskis, J. Šliogerienė, T. Vilutienė. DOI 10.1016/j.scs.2021.102708 // Sustainable Cities and Society. 2021. Vol. 67, Iss. 1. Art 102708
- 14. Development of mceliece modified asymmetric crypto-code system on elliptic truncated codes / S. Yevseiev, Kh. Rzayev, O. Korol, Z. Imanova. DOI 10.15587/1729-4061.2016.75250 // Eastern-European Journal of Enterprise Technologies. 2016. Vol. 4, No. 9 (82). Pp. 18–26.

УДК 658.5.011

DOI: 10.54950/26585340 2024 4 51

Свод правил «Научно-техническое сопровождение изысканий, проектирования и строительства. Общие положения». Применение положений и основные вопросы отрасли

The Set of Rules «Scientific and Technical Support of Research, Design and Construction. General Provisions». The Application of the Regulations and the Main Issues of the Industry

Капырин Павел Дмитриевич

Кандидат технических наук, доцент, начальник Научно-технического управления, ФГБОУ ВО «Национальный исследовательский Московский государственный строительный университет» (НИУ МГСУ), Россия, 129337, Москва, Ярославское шоссе, 26, kapyrin@mgsu.ru

Kapyrin Pavel Dmitrievich

Candidate of Engineering Sciences, Associate Professor, Head of the Scientific and Technical Department, National Research Moscow State University of Civil Engineering (NRU MGSU), Russia, 129337, Moscow, Yaroslavskoe shosse, 26, kapyrin@mqsu.ru

Загорская Ангелина Владимировна

Кандидат технических наук, доцент кафедры «Технологии и организация строительного производства», ФГБОУ ВО «Национальный исследовательский Московский государственный строительный университет» (НИУ МГСУ), Россия, 129337, Москва, Ярославское шоссе, 26, lina.zagorskaya@gmail.com

Zagorskaya Angelina Vladimirovna

Candidate of Engineering Sciences, Associate Professor of the Department of Technologies and Organizations of Construction Production, National Research Moscow State University of Civil Engineering (NRU MGSU), Russia, 129337, Moscow, Yaroslavskoe shosse, 26, lina.zagorskaya@gmail.com

Аннотация. В статье рассмотрены основные положения свода правил «Научно-техническое сопровождение изысканий, проектирования и строительства. Общие положения», вступившего в действие с 1 июля 2024 года, разработанного авторским коллективом НИУ МГСУ, ООО «НИИ ПТЭС». Целью настоящей статьи является публикация ответов на наиболее распространённые вопросы отрасли к разработчикам Свода правил, полученные в рамках проведения профессиональнообщественного обсуждения на площадках НОПРИЗ, ФАУ ФЦС (ТК 465), процедуры публичного обсуждения Росстандарта и иных организаций.

В статье рассмотрены вопросы развития НТС как самостоятельного вида деятельности; требований к специализи-

рованным научно-исследовательским организациям; состава сооружений, для которых необходим НТС; НТС различных видов инженерных изысканий; определения состава работ НТС проектирования и строительства; основных аспектов НТС эксплуатации, реконструкции и сноса. Обобщенный перечень распространённых вопросов сформирован путём систематизации замечаний и предложений, высказанных в процессе публичного обсуждения и отражающих некорректную интерпретацию пунктов Свода правил. Для ответов на поставленные вопросы приводятся цитаты Свода правил, а также данные научных работ, нормативно-технические документы и тенденции развития строительной отрасли, которыми руководствовались разработчики Свода правил.

ность, программа научно-технического сопровождения.

Abstract. The article discusses the main provisions of the set of rules, which entered into force on July 1, 2024, developed by the team of authors of the NRU MGSU, LLC "NII PTES". The purpose of this article is to publish answers to the most common industry questions to the developers of the set of rules received as part of a professional and public discussion at the sites of NOPRIZ, FAA FTS (TC 465), the procedures for public discussion of Rosstandart and other organizations.

This work explores the formation of scientific and technical support (NTS) as a separate professional field. It analyzes the criteria for specialized scientific institutions and identifies facilities in need of NTS. The study covers the application of VAT in various types of engineering surveys and outlines the components of NTS in the processes of design and construction of facilities. In addition, the key aspects of the NTS during the operation, moderniza-

Введение

В мае 2024 года Приказом Минстроя России [1] утверждён свод правил 539.1325800.2024 «Научно-техническое сопровождение изысканий, проектирования и строительства. Общие положения» [2] (далее – Свод правил). В рамках проведения профессионально-общественного обсуждения на площадках НОПРИЗ, ФАУ ФЦС (ТК 465), процедуры публичного обсуждения Росстандарта с 21 ноября 2022 года по 22 января 2023 года и иных организаций к проекту Свода правил получено более 1200 замечаний и рекомендаций. Отзывы в виде замечаний и предложений по проекту изменений к Своду правил в целом и его отдельным структурным элементам поступили от 45 организаций и физических лиц, в том числе от ООО «НК «Роснефть» - НТЦ»,ООО «НИИ Транснефть», ГБУ «Мосгоргеотрест», АО «Атомэнергопроект», АПАО «Транснефть», Ростехнадзор, ПАО «Газпром».

Порядка 45 % замечаний и предложений было принято авторским коллективом, в отношении остальных замечаний даны обоснования. Следует отметить, что большинство не принятых разработчиками замечаний и критических комментариев в адрес Свода правил связаны с недопониманием основных положений Свода правил. При разработке Свода правил были учтены:

- требования нормативно-технических документов в части научно-технического сопровождения (HTC);
- результаты научных исследований различных аспектов HTC;
- опыт практической деятельности;
- тенденции развития строительной отрасли, в том числе связанные с изменениями в [3], вступившими в силу с 01.09.2024.

Целью настоящей статьи является публикация ответов на наиболее распространённые вопросы отрасли к разработчикам Свода правил:

- 1. Зачем в Своде правил ввели НТС как новый вид деятельности?
- 2. Кто и как подтверждает, что организация соответствует требованиям к специализированной научно-исследовательской организации, имеющей право выполнять HTC?
- 3. Расширился ли состав сооружений, для которых HTC является обязательным?
- 4. Почему HTC предусмотрено только для инженерногеологических изысканий?

tion and dismantling of structures are considered. The list of the most frequently asked questions in the industry has been compiled by analyzing and synthesizing the comments and recommendations on the set of rules received during the public discussion procedures. This was done to address the misunderstanding of the provisions of the set of rules. When forming the answers, excerpts from regulatory documents, research results, technical standards and modern trends in construction are used, which formed the basis for the creation of the considered set of rules. Direct quotations from this document are provided to confirm the information provided.

Keywords: scientific and technical support (NTS), regulatory and technical framework, mechanical safety, scientific and technical support program.

- 5. Как определить состав работ HTC на этапе изысканий и проектирования?
- 6. Как определить состав работ HTC строительства? **Материалы и методы**

При проведении анализа использованы общенаучные методы (анализ и синтез, обобщение, опосредованное описание). Перечень наиболее распространённых вопросов отрасли приведён в обобщённом виде на основе замечаний и предложений к Своду правил в рамках процедур публичного обсуждения, основанных на недопонимании положений Свода правил. При формировании ответов используются выдержки из нормативных документов, цитаты из Свода правил, а также ссылки на теорию и практику HTC.

Ответы на наиболее распространённые вопросы

Вопрос 1. Зачем в СП ввели НТС как новый вид деятельности?

Ответ (краткий): Свод правил не создаёт научно-техническое сопровождение как отдельную сферу деятельности, а, скорее, упорядочивает и конкретизирует нормы, установленные другими регулирующими документами и существующими методами HTC.

Ответ (подробный): Концепция научно-технического сопровождения в строительстве зародилась в 1995 году при реновации центральной площади Москвы [4]. К 2013 году НТС было интегрировано в ключевые нормативные документы отрасли. С середины 2015 по август 2020 года, согласно [5], НТС стало обязательным инструментом для обеспечения надёжности и механической безопасности объектов класса КС-3.

Эффективность применения НТС для сложных и ответственных объектов (класса КС-3) на этапах проектирования и возведения подтверждается как научными исследованиями [6–9], так и практическим опытом [10–12].

До 2023 года нормативная база по HTC характеризовалась фрагментарностью и отсутствием единых определений. Ситуация улучшилась с принятием Изменения № 1 к ГОСТ 27751-2014 [13], которое уточнило основные термины и положения, касающиеся HTC. В таблице 1 представлен анализ определений понятия HTC: ключевое различие между определениями состоит в том, что в редакции определения Свода правил исключён характер работ HTC, который не соответствует сложившейся практике и нормативным требованиям к HTC. В дополнение к этому, формулировка понятия HTC подчёркивает необ-

Определение в соответствии с ГОСТ 27751-2014, п. 2.1.21 [13]

Научно-техническое сопровождение – комплекс работ научноисследовательского, методического, экспертного, контрольного, информационно-аналитического и организационно-правового характера, выполняемых специализированными научноисследовательскими организациями в процессе изысканий, проектирования, возведения, эксплуатации, реконструкции или демонтажа объектов строительства для обеспечения их надёжности, безопасности, функциональной пригодности и долговечности.

Определение в соответствии с СП 539, п. 3.14 [2]

Научно-техническое сопровождение (научное сопровождение); HTC – комплекс работ научно-исследовательского, методического, экспертного и контрольного характера, выполняемых специализированными научно-исследовательскими организациями в процессе изысканий, проектирования, строительства, эксплуатации, реконструкции, сноса (демонтажа) зданий и сооружений для обеспечения их качества, надёжности, механической безопасности, функциональной пригодности и долговечности.

Табл. 1. Формулировки термина «научно-техническое сопровождение» **Таb. 1.** Formulations of the term «scientific and technical support»

ходимость обеспечения качества и механической безопасности зданий и сооружений.

Вопрос 2. Кто, в какой момент и как подтверждает, что организация соответствует требованиям к специализированной научно-исследовательской организации, имеющей право выполнять HTC?

Ответ (краткий): Застройщик (технический заказчик).

Ответ (подробный): До 2023 года в нормативно-технической документации не были однозначно регламентированы требования к организациям, которые имеют право выполнять научно-техническое сопровождение, кроме того, отсутствовала единая терминология для данных организаций, в различных документах они были названы:

- «специализированные» [14],
- «уполномоченные заказчиком специализированные организации» [15],
- «компетентные» [16],
- «специализированные организации для осуществления научно-технического сопровождения» [17].

При этом в [17] было приведено наиболее полное описание требований, в т. ч. к наличию научных кадров, компетенций, оборудования и программного обеспечения. Определение «специализированной научно-исследовательской организации», которое вошло в Изменение № 1 к ГОСТ 27751-2014 [13], основано на определении СП 267.1325800.2016 [17].

В таблице 2 приведено сравнение определений понятия «специализированная научно-исследовательская организация»: ключевое различие между определениями состоит в том, что в редакции определения Свода правил добавлены необходимые требования к наличию оборудования, приборной базы, программного обеспечения, допусков СРО в части изысканий и проектирования. Застройщик (технический заказчик) в момент выбора ис-

полнителя детализирует состав требований и проверяет претендентов на соответствие.

Вопрос 3. Расширился ли состав сооружений, для которых НТС является обязательным?

Ответ (краткий): Нет, Свод правил исключает некоторые сооружения из требований к обязательному НТС.

Ответ (подробный):

- 1. Объекты строительства, отнесённые законодательством к категориям уникальных, особо опасных и технически сложных; повышенного уровня ответственности, относящиеся к классу КС-3, подлежат обязательному научно-техническому сопровождению согласно ГОСТ 27751, при этом Свод правил исключает некоторые сооружения из требований к обязательному НТС, если объект соответствует определённым условиям (Приложение А. Таблица А.1. [2]).
- 2. Научно-техническое сопровождение (НТС) может потребоваться для ряда специфических объектов. Среди таких объектов можно выделить: сооружения в районах с трудными геологическими и климатическими условиями; постройки в густонаселённых городских районах; объекты культурного достояния; места большого скопления людей. В подобных ситуациях потребность в проведении научно-технического сопровождения может быть обозначена в техническом задании на изыскательские работы, проектирование или в одобренной проектной и технологической документации. Решение о проведении НТС принимается застройщиком, уполномоченной им организацией (техническим заказчиком) или генеральным проектировщиком по поручению застройщика.
- 3. Необходимость осуществления научно-технического сопровождения в случаях, обозначенных в пункте 5 статьи 15 [3], обусловлена изменениями в федеральных нормативно-правовых актах.

Определение в соответствии с ГОСТ 27751-2014, п. 2.1.22 [13]

Специализированная научно-исследовательская организация – организация, осуществляющая в качестве основной деятельности научную, проектную и (или) научно-техническую деятельность по соответствующему профилю, располагающая научными кадрами, оценка квалификации которых подтверждена государственной системой научной аттестации.

Определение в соответствии с СП 539, п. 3.19 [2]

Специализированная научно-исследовательская организация — организация, осуществляющая в качестве основной деятельности научную или научно-техническую деятельность по соответствующему профилю, имеющая в своём составе научных работников или иных лиц, квалификация которых подтверждена государственной системой научной аттестации, поддерживающая и развивающая в своём составе соответствующую научно-исследовательскую и опытно-экспериментальную базу, а также обладающая необходимым для выполнения работ испытательным оберудованием, приборно-инструментальной базой, программным обеспечением, допущенными к применению в порядке, установленном действующим законодательством Российской Федерации, и являющаяся членом саморегулируемой(ых) организации(й) по проектированию и инженерным изысканиям.

Табл. 2. Анализ определений понятия «специализированная научно-исследовательская организация» **Таb. 2.** Analysis of the definition of a «specialized research organization»

Вопрос 4. Почему НТС предусмотрено только для инженерно-геологических изысканий?

Ответ: НТС предусмотрено не только для инженерно-геологических изысканий (см. п. 8.1.2 Свода правил), но требования к НТС инженерно-геологических изысканий детализированы более подробно, т. к. требования действующих норм и правил предусматривают вариативность в отношении данных видов изысканий, а требования к остальным видам изысканий регламентированы.

Вопрос 5. Как определить состав работ НТС на этапе изысканий и проектирования?

Ответ (краткий): По приложению А Свода правил. Ответ (подробный): В соответствии с п. 5.2 Свода правил, НТС изысканий и проектирования выполняют на основании задания. Состав работ утверждается застройщиком (техническим заказчиком) на основании нормативных документов (в том числе рассматриваемого Свода правил) и технической документации, по согласованию с проектной организацией и специализированной научно-исследовательской организацией. В приложении А Свода правил приведены требования к объёму НТС, а в приложении Б — типовая форма задания на НТС.

Ответ (подробный): Согласно пункту 5.2 Свода правил, НТС изысканий и проектирования выполняется на основании задания. Состав работ НТС для этих этапов утверждается застройщиком (техническим заказчиком). При этом учитываются положения нормативных актов (включая данный Свод правил) и техническая документация. Процесс согласования проходит с участием проектировщиков и специализированных научно-исследовательских организаций. Детальные требования к составу работ НТС представлены в приложении А Свода правил, а стандартный шаблон задания на проведение НТС можно найти в приложении Б.

Приложение А состоит из двух таблиц: таблица А.1 отвечает на вопросы – является ли НТС изысканий и проектирования обязательным для объекта и на основании чего определяется состав работ НТС. Так, например, для объектов использования атомной энергии состав работ НТС может определяться на основании документов, утверждённых ГК «Ростатом», в случаях когда НТС выполняется по инициативе застройщика (технического заказчика) состав необходимых работ определяет сам застройщик, а для объектов повышенного уровня ответственности и уникальных объектов состав работ НТС определяется по таблице А.2. Таблица А.2, в свою очередь, устанавливает взаимосвязь между характеристиками проектируемого объекта и площадки его строительства и составом работ НТС изысканий и проектирования и применяется только в тех случаях, когда НТС необходимо в соответствии с таблицей А.1.

В дополнение к Приложению А, в п. 9.2.1 Свода правил детализирован состав работ, выполняемых НТС на этапе предпроектной проработки концепции, а в п. 9.2.3 — работ, которые могут быть выполнены в рамках НТС по инициативе застройщика.

СПИСОК ЛИТЕРАТУРЫ

Об утверждении свода правил «Научно-техническое сопровождение инженерных изысканий, проектирования и строительства. Общие положения»: Приказ Министерства строительства и жилищно-коммунального хозяйства Российской Федерации № 353/пр от 27 мая 2024 года // Минстрой России. – Москва, 2024.

Вопрос 6. Как определить состав работ НТС строительства?

Ответ (краткий): Необходимо разработать программу HTC строительства.

Ответ (подробный): Как указано в пункте 5.3 Свода правил, научно-техническое сопровождение (НТС) строительных работ реализуется на основе специально разработанной программы. Программа НТС строительства формируется в рамках НТС проектирования. Однако, если по каким-то причинам НТС не было предусмотрено на стадии проектирования, программа может быть разработана непосредственно перед началом строительства и утверждена застройщиком (техническим заказчиком). Важно отметить, что документ допускает внесение изменений и корректировок в ходе возведения объекта.

При определении состава работ HTC строительства анализируются проектные решения по объекту, результаты прочностных и геотехнических расчётов, техническое состояние сооружений окружающей застройки и иные параметры, оказывающие влияние на необходимый и достаточный состав работ HTC. Раздел 10 Свода правил содержит цели и задачи HTC, возможный состав работ и их содержание, а приложение Г детализирует состав работ по техническому мониторингу в рамках HTC, при этом данные разделы предназначены для специализированных научно-исследовательских организаций — разработчиков программы HTC строительства.

Заключение

В заключение важно отметить, что научно-техническое сопровождение уже долгие годы успешно применяется в строительной отрасли. Реализованные проекты наглядно демонстрируют эффективность этого подхода в решении сложных инженерных задач и обеспечении механической безопасности. НТС зарекомендовало себя как неотъемлемый элемент современного строительного процесса, особенно при реализации масштабных и технически сложных объектов.

- 1. Рассмотрены ответы на наиболее распространённые вопросы отрасли к разработчикам свода правил «Научно-техническое сопровождение инженерных изысканий, проектирования и строительства. Основные положения».
- 2. Свод правил не вводит НТС как новый вид деятельности, но систематизирует и уточняет требования иных нормативных документов и сложившейся практики научно-технического сопровождения. Застройщик (технический заказчик) в момент выбора исполнителя детализирует состав требований к специализированным научно-исследовательским организациям и проверяет претендентов на соответствие требованиям. Состав сооружений, для которых НТС является обязательным, соответствует ранее утверждённым требованиям нормативно-технических документов. Состав работ НТС изысканий и проектирования может быть определён на основе свода правил, а состав работ НТС строительства определяется на основе программы, разработанной специализированной научно-исследовательской организацией.
- 2. Научно-техническое сопровождение инженерных изысканий, проектирования и строительства. Общие положения : СП 539.1325800.2024 : Свод правил : утверждён приказом Министерства строительства и жилищно-коммунального хозяйства Российской Федерации № 353/пр от 27 мая 2024 года : введён в действие с 28 июня 2024 года / разработан ФГБОУ ВО «Национальный исследовательский Мо-

- сковский государственный строительный университет» (НИУ МГСУ), ООО «Научно-исследовательский институт проектирования, технологии и экспертизы строительства» (ООО «НИИ ПТЭС») // Минстрой России. Москва : Росстандарт, 2024. 90 с. Издание официальное.
- 3. О внесении изменений в Федеральный закон «Технический регламент о безопасности зданий и сооружений» и отдельные законодательные акты Российской Федерации : Федеральный закон от 25.12.2023 № 653-Ф3 : принят Государственной Думой 15 декабря 2023 года : одобрен Советом Федерации 22 декабря 2023 года. Официальный интернет-портал правовой информации www.pravo.gov.ru, 25.12.2023, № 0001202312250053. 2023.
- Левшин, В. В. Нормативно-техническая база научно-технического сопровождения строительства / В. В. Левшин, М. М. Козелков // Вестник НИЦ «Строительство». 2020. № 1 С 78–90
- 5. Об утверждении перечня национальных стандартов и сводов правил (частей таких стандартов и сводов правил), в результате применения которых на обязательной основе обеспечивается соблюдение требований Федерального закона «Технический регламент о безопасности зданий и сооружений» : Постановление Правительства РФ № 1521 от 26 декабря 2014 года // Собрание законодательства Российской Федерации. 2015. № 2. Ст. 465.
- 6. Алахверди, А. А. Разработка системы комплексного научно-технического сопровождения проектирования и возведения уникальных сооружений на примере крытого катка в г. Коломна: дис. ... канд. тех. наук: 05.23.01 / Алахверди Александр Антонович; ОАО «НИЦ «Строительство»». Москва, 2010. 21 с.
- Алёхин, В. Н. Научно-техническое сопровождение строительства зданий и сооружений / В. Н. Алёхин, А. А. Антипин, С. Н. Городилов // Сборник материалов III Международной конференции «Проблемы безопасности строительных критичных инфраструктур» (SAFETY2017), Екатеринбург, 16–17 мая 2017 года / Уральский федеральный университет им. первого Президента России Б. Н. Ельцина, Строительный институт; НИЦ «Надёжность и ресурс больших систем и машин» УрО РАН. Екатеринбург, 2017. С. 160–173.
- Научно-техническое сопровождение проектирования и строительства подземных сооружений, как фактор обеспечения единой научно-технической политики / Н. Н. Бычков И. Я. Дорман, С. Г. Елгаев, С. В. Мазеин, В. Е. Меркин, М. А. Мутушев // Метро и тоннели. – 2015. – № 1. – С. 18–19.
- Еремеев, П. Г. Научно-техническое сопровождение проектирования и возведения металлических конструкций большепролётных уникальных зданий и сооружений / П. Г. Еремеев // Вестник НИЦ «Строительство». – 2010. – № 2. – С. 21 – 29.
- Нугужинов, Ж. С. Проблемы научно-технического сопровождения, экспертизы и мониторинга технического состояния уникальных сооружений Казахстана с учётом требований еврокодов / Ж. С. Нугужинов, П. А. Кропачев, И. А. Курохти-

REFERENCES

- Ob utverzhdenii svoda pravil «Nauchno-tekhnicheskoe soprovozhdenie inzhenernykh izyskanij, proektirovaniya i stroitel'stva. Obshhie polozheniya» [On approval of the set of rules "Scientific and technical support of engineering surveys, design and construction. General provisions"]: Prikaz Ministerstva stroitel'stva i zhilishhno-kommunal'nogo khozyajstva Rossijskoj Federatsii № 353/pr ot 27 maya 2024 goda [Order of the Ministry of Construction and Housing and Communal Services of the Russian Federation No. 353/pr dated May 27, 2024] // Minstroj Rossii [Ministry of Construction of Russia]. – Moscow, 2024.
- Nauchno-tekhnicheskoe soprovozhdenie inzhenernykh izyskanij, proektirovaniya i stroitel'stva. Obshhie polozheniya : SP 539.1325800.2024 [Scientific and technical support of

- СТРОИТЕЛЬНОЕ ПРОИЗВОДСТВО № 4 (52)'2024
- на // Сейсмостойкое строительство. Безопасность сооружений. 2013. № 6. С. 47–51.
- 11. Леонтьев, Е. В. Научно-техническое сопровождение при проектировании объектов производственного и гражданского назначения повышенного уровня ответственности / Е. В. Леонтьев, Р. Ю. Газизов // Вестник государственной экспертизы. 2020. № 1. С. 54–60.
- 12. Лушников, В. В. Использование мирового опыта при проектировании и строительстве фундаментов высотных зданий с учётом геологических условий Екатеринбурга / В. В. Лушников // Академический вестник УРАЛНИИПРОЕКТ РААСН. 2009. № 1. С. 74–80.
- 13. Изменение № 1 к ГОСТ 27751-2014 «Надёжность строительных конструкций и оснований. Основные положения» : принято Межгосударственным советом по стандартизации, метрологии и сертификации протоколом № 156-П от 22.11.22 : введено в действие на территории Российской Федерации 01.02.2023. Москва : Стандартинформ, 2023. 11 с.
- 14. Основания зданий и сооружений: СП 22.13330.2016: Свод правил: утверждён приказом Министерства строительства и жилищно-коммунального хозяйства Российской Федерации от 16 декабря 2016 г. № 970/пр: введён в действие с 17 июня 2017 г. / разработан Научно-исследовательским, проектно-изыскательским и конструкторско-технологическим институтом оснований и подземных сооружений им. Н. М. Герсеванова (НИИОСП им. Н. М. Герсеванова), институтом АО «НИЦ «Строительство»» // Росстандарт. Москва: Стандартинформ, 2016. 222 с. Издание официальное.
- 15. Мосты и трубы : СП 35.13330.2011 : Свод правил : утверждён приказом Министерства регионального развития Российской Федерации от 28 декабря 2010 г. № 822 : введён в действие с 20 мая 2011 г. / разработан ОАО «ЦНИИС» // Росстандарт. Москва : Стандартинформ, 2011. 341 с.
- 16. Строительство в сейсмических районах. СНиП II7-81 : СП 14.13330.2014 : утверждён приказом Министерства строительства и жилищно-коммунального хозяйства Российской Федерации от 18 февраля 2014 г. № 60/пр : введён в действие с 1 июня 2014г. / разработан Центральным институтом строительных конструкций и сооружений им. В. А. Кучеренко (ЦНИИСК им. В. А. Кучеренко), институтом ОАО «НИЦ «Строительство» // Минстрой России. Москва, 2014. 125 с. Издание официальное.
- 17. Здания и комплексы высотные. Правила проектирования : СП 267.1325800.2016 : Свод правил : утверждён приказом Министерства строительства и жилищно-коммунального хозяйства Российской Федерации от 30 декабря 20161 г. № 1032/пр : введён в действие с 1 июля 2017 г. / разработан АО «ЦНИИЭП жилища институт комплексного проектирования жилых и общественных зданий» // Минтрой России. Москва : Стандартинформ, 2016. 145 с. Издание официальное.

engineering surveys, design and construction. General provisions: SP 539.1325800.2024]: Svod pravil: utverzhdyon prikazom Ministerstva stroitel'stva i zhilishhno-kommunal'nogo khozyajstva Rossijskoj Federatsii № 353/pr ot 27 maya 2024 goda: vvedyon v dejstvie s 28 iyunya 2024 goda [Set of Rules: approved by Order of the Ministry of Construction and Housing and Communal Services of the Russian Federation No. 353/pr dated May 27, 2024: effective June 28, 2024] / FGBOU VO «Natsional'nyj issledovatel'skij Moskovskij gosudarstvennyj stroitel'nyj universitet» (NIU MGSU), OOO «Nauchno-issledovatel'skij institut proektirovaniya, tekhnologii i ehkspertizy stroitel'stva» (OOO «NII PTEHS») [National Research Moscow State University of Civil Engineering (NRU MGSU), Scientific Research Institute LLC design, technology and expertise of construction" (NII PTPP LLC)] // Minstroj

- Rossii [Ministry of Construction of Russia]. Moscow: Rosstandart, 2024. 90 p. The publication is official.
- 3. O vnesenii izmenenij v Federal'nyj zakon «Tekhnicheskij reglament o bezopasnosti zdanij i sooruzhenij» i otdel'nye zakonodatel'nye akty Rossijskoj Federatsii [On Amendments to the Federal Law "Technical Regulations on the Safety of Buildings and Structures" and Certain Legislative Acts of the Russian Federation]: Federal'nyj zakon ot 25.12.2023 № 653-FZ [Federal Law No. 653-FZ dated December 25, 2023]: prinyat Gosudarstvennoj Dumoj 15 dekabrya 2023 goda: odobren Sovetom Federatsii 22 dekabrya 2023 goda [adopted by the State Duma on December 15, 2023: approved by the Federation Council on December 22, 2023]. The official Internet portal of legal information www.pravo.gov.ru, 12/25/2023, No. 0001202312250053. 2023.
- Levshin, V. V. Normativno-tekhnicheskaya baza nauchno-tekhnicheskogo soprovozhdeniya stroitel'stva [Regulatory and technical base of scientific and technical support of construction]/V.V. Levshin, M. M. Kozelkov//Vestnik NITS «Stroitel'stvo» [Bulletin of the Scientific Research Center "Construction"]. 2020. No. 1. Pp. 78–90.
- 5. Ob utverzhdenii perechnya natsional'nykh standartov i svodov pravil (chastej takikh standartov i svodov pravil), v rezul'tate primeneniya kotorykh na obyazatel'noj osnove obespechivaetsya soblyudenie trebovanij Federal'nogo zakona «Tekhnicheskij reglament o bezopasnosti zdanij i sooruzhenij» [On approval of the list of national standards and sets of rules (parts of such standards and sets of rules), as a result of which compliance with the requirements of the Federal Law "Technical Regulations on the Safety of Buildings and Structures" is ensured on a mandatory basis]: Postanovlenie Pravitel'stva RF № 1521 ot 26 dekabrya 2014 goda [Decree of the Government of the Russian Federation No. 1521 of December 26, 2014] // Sobranie zakonodatel'stva Rossijskoj Federatsii [Collection of Legislation of the Russian Federation]. 2015. No. 2. Art. 465.
- Alakhverdi, A. A. Razrabotka sistemy kompleksnogo nauchnotekhnicheskogo soprovozhdeniya proektirovaniya i vozvedeniya unikal'nykh sooruzhenij na primere krytogo katka v g. Kolomna [Development of a system of integrated scientific and technical support for the design and construction of unique structures using the example of an indoor skating rink in Kolomna]: dis. ... kand. tekh. nauk: 05.23.01 [dis. ... Candidate of Technical Sciences: 05.23.01] / Alakhverdi, Alexander Antonovich; JSC SIC Stroitelstvo. Moscow, 2010. 21 p.
- 7. Alyokhin, V. N. Nauchno-tekhnicheskoe soprovozhdenie stroitel'stva zdanij i sooruzhenij [Scientific and technical support for the construction of buildings and structures] / V. N. Alyokhin, A. A. Antipin, S. N. Gorodilov // Sbornik materialov III Mezhdunarodnoj konferentsii «Problemy bezopasnosti stroitel'nykh kritichnykh infrastruktur» (SAFETY2017), Ekaterinburg, 16-17 maya 2017 goda [Proceedings of the III International Conference "Safety problems of critical construction infrastructures" (SAFETY2017), Yekaterinburg, May 16-17, 2017] / Ural'skij federal'nyj universitet im. pervogo Prezidenta Rossii B. N. El'tsina, Stroitel'nyj institut; NITS «Nadyozhnost' i resurs bol'shikh sistem i mashin» UrO RAN [Ural Federal University named after the First President of Russia B. N. Yeltsin, Institute of Civil Engineering; Research Center "Reliability and Resource of Large systems and Machines" Ural Branch of the Russian Academy of Sciences]. – Yekaterinburg, 2017. – Pp. 160–173.
- 8. Nauchno-tekhnicheskoe soprovozhdenie proektirovaniya i stroitel'stva podzemnykh sooruzhenij, kak faktor obespecheniya edinoj nauchno-tekhnicheskoj politiki [Scientific and technical support for the design and construction of underground structures as a factor in ensuring a unified scientific and technical policy] / N. N. Bychkov, I. Ya. Dorman, S. G. Yelgaev, S. V. Mazein, V. E. Merkin, M. A. Mutushev // Metro i tonneli [Metro and tunnels]. 2015. No. 1. Pp. 18–19.

- Eremeev, P. G. Nauchno-tekhnicheskoe soprovozhdenie proektirovaniya i vozvedeniya metallicheskikh konstruktsij bol'sheprolyotnykh unikal'nykh zdanij i sooruzhenij [Scientific and technical support for the design and construction of metal structures of large-span unique buildings and structures] / P. G. Eremeev // Vestnik NITS «Stroitel'stvo» [Bulletin of SIC "Construction"]. – 2010. – No. 2. – Pp. 21–29.
- Nuguzhinov, Zh. S. Problemy nauchno-tekhnicheskogo soprovozhdeniya, ehkspertizy i monitoringa tekhnicheskogo sostoyaniya unikal'nykh sooruzhenij Kazakhstana s uchyotom trebovanij evrokodov [Problems of scientific and technical support, expertise and monitoring of the technical condition of unique structures in Kazakhstan, taking into account the requirements of Eurocodes] / Zh. S. Nuguzhinov, P. A. Kropachev, I. A. Kurokhtina //Sejsmostojkoe stroitel'stvo. Bezopasnost' sooruzhenij [Earthquake-resistant construction. Safety of structures]. 2013. No. 6. Pp. 47–51.
- 11. Leontiev, E. V. Nauchno-tekhnicheskoe soprovozhdenie pri proektirovanii ob'ektov proizvodstvennogo i grazhdanskogo naznacheniya povyshennogo urovnya otvetstvennosti [Scientific and technical support in the design of industrial and civil facilities with an increased level of responsibility] / E. V. Leontiev, R. Yu. Gazizov // Vestnik gosudarstvennoj ehkspertizy [Bulletin of State Expertise]. 2020. No. 1. Pp. 54–60.
- 12. Lushnikov, V. V. Ispol'zovanie mirovogo opyta pri proektirovanii i stroitel'stve fundamentov vysotnykh zdanij s uchyotom geologicheskikh uslovij Ekaterinburga [Using world experience in the design and construction of foundations of high-rise buildings taking into account the geological conditions of Yekaterinburg] / V. V. Lushnikov // Akademicheskij vestnik URALNIIPROEKT RAASN [Academic Bulletin of URALNIIPROEKT RASN]. 2009. No. 1. Pp. 74–80.
- 13. Izmenenie № 1 k GOST 27751-2014 «Nadyozhnost' stroitel'nykh konstruktsij i osnovanij. Osnovnye polozheniya» [Amendment No. 1 to GOST 27751-2014 "Reliability of building structures and foundations. Basic provisions"]: prinyato Mezhgosudarstvennym sovetom po standartizatsii, metrologii i sertifikatsii protokolom № 156-P ot 22.11.22 [adopted by the Interstate Council for Standardization, Metrology and Certification by Protocol No. 156-P dated 11/22/12]: vvedeno v dejstvie na territorii Rossijskoj Federatsii 01.02.2023 [put into effect on the territory of the Russian Federation on 02/01/2023]. Moscow: Standartinform, 2023. 11 p.
- 14. Osnovaniya zdanij i sooruzhenij : SP 22.13330.2016 [Foundations of buildings and structures : SP 22.13330.2016] : Svod pravil: utverzhdyon prikazom Ministerstva stroitel'stva i zhilishhno-kommunal'nogo khozyajstva Rossijskoj Federatsii ot 16 dekabrya 2016 q. № 970/pr : vvedyon v dejstvie s 17 iyunya 2017 g. [Set of Rules : approved by Order of the Ministry of Construction and Housing and Communal Services of the Russian Federation dated December 16, 2016 No. 970/pr : effective from June 17, 2017] / Nauchno-issledovatel'skij, proektno-izyskateľskij i konstruktorsko-tekhnologicheskij institut osnovanij i podzemnykh sooruzhenij im. N. M. Gersevanova (NI-IOSP im. N. M. Gersevanova), institut AO «NITS «Stroitel'stvo»» [Scientific Research, Design, Survey and Engineering Technology Institute of Foundations and Underground Structures named after N. M. Gersevanova (NIIOSP named after N. M. Gersevanov), Institute of JSC SIC Stroitelstvo] // Rosstandart [Rosstandart]. - Moscow: Standartinform, 2016. - 222 p. - Official publication.
- 15. Mosty i truby: SP 35.13330.2011 [Bridges and pipes: SP 35.13330.2011]: Svod pravil: utverzhdyon prikazom Ministerstva regional'nogo razvitiya Rossijskoj Federatsii ot 28 dekabrya 2010 g. № 822: vvedyon v dejstvie s 20 maya 2011 g. / OAO «TSNIIS» [Set of rules: approved by Order of the Ministry of Regional Development of the Russian Federation dated December 28, 2010 No. 822: effective from May 20, 2011] / JSC TSNIIS // Rosstandart [Rosstandart]. Moscow:

- Standartinform, 2011. 341 p.
- 16. Stroitel'stvo v sejsmicheskikh rajonakh. SNiP II7-81: SP 14.13330.2014 [Construction in seismic areas. SNiP II7-81: SP 14.13330.2014]: utverzhdyon prikazom Ministerstva stroitel'stva i zhilishhno-kommunal'nogo khozyajstva Rossijskoj Federatsii ot 18 fevralya 2014 g. № 60/pr: vvedyon v dejstvie s 1 iyunya 2014g. [approved by Order of the Ministry of Construction and Housing and Communal Services of the Russian Federation dated February 18, 2014 No. 60/pr: effective June 1, 2014] / Tsentral'nyj institut stroitel'nykh konstruktsij i sooruzhenij im.V.A. Kucherenko (TSNIISK im.V.A. Kucherenko), institut OAO «NITS «Stroitel'stvo» [Central Institute of Building Structures and Structures named after V.A. Kucherenko (TSNIISK named after V. A. Kucherenko), Institute of JSC "SIC "Construction"] // Minstroj Rossii [Ministry of Construction of Russia]. Moscow, 2014. 125 p. Official publication.

СТРОИТЕЛЬНОЕ ПРОИЗВОДСТВО № 4 (52)'2024

17. Zdaniya i kompleksy vysotnye. Pravila proektirovaniya: SP 267.1325800.2016 [High-rise buildings and complexes. Design rules: SP 267.1325800.2016]: Svod pravil: utverzhdyon prikazom Ministerstva stroitel'stva i zhilishhnokommunal'nogo khozyajstva Rossijskoj Federatsii ot 30 dekabrya 20161 g. № 1032/pr:vvedyon v dejstvie s 1 iyulya 2017 g. [Set of rules: approved by Order of the Ministry of Construction and Housing and Communal Services of the Russian Federation dated December 30, 20161 No. 1032/pr: effective July 1, 2017] / AO «TSNIIEHP zhilishha – institut kompleksnogo proektirovaniya zhilykh i obshhestvennykh zdanij» [JSC TSNIIEP Housing - Institute of Integrated Design of Residential and Public Buildings] // Mintroj Rossii [Ministry of Construction of Russia]. – Moscow: Standartinform, 2016. – 145 p. – Official publication.

УДК 658.5.011

DOI: 10.54950/26585340_2024_4_57

Актуальность научно-технического сопровождения при обосновании соответствия конструктивных решений требованиям технического регламента с учётом изменений в системе строительно-технического нормирования

The Relevance of Scientific and Technical Support in Substantiating the Compliance of Design Solutions with the Requirements of Technical Regulations, Taking into Account Changes in the System of Construction and Technical Rationing

Капырин Павел Дмитриевич

Кандидат технических наук, доцент, начальник Научно-технического управления, ФГБОУ ВО «Национальный исследовательский Московский государственный строительный университет» (НИУ МГСУ), Россия, 129337, Москва, Ярославское шоссе, 26, kapyrin@mqsu.ru

Kapyrin Pavel Dmitrievich

Candidate of Engineering Sciences, Associate Professor, Head of the Scientific and Technical Department, National Research Moscow State University of Civil Engineering (NRU MGSU), Russia, 129337, Moscow, Yaroslavskoe shosse, 26, kapyrin@mqsu.ru

Загорская Ангелина Владимировна

Кандидат технических наук, доцент кафедры «Технологии и организация строительного производства», ФГБОУ ВО «Национальный исследовательский Московский государственный строительный университет» (НИУ МГСУ), Россия, 129337, Москва, Ярославское шоссе, 26, lina.zagorskaya@gmail.com

Zagorskaya Angelina Vladimirovna

Candidate of Engineering Sciences, Associate Professor of the Department of Technologies and Organizations of Construction Production, National Research Moscow State University of Civil Engineering (NRU MGSU), Russia, 129337, Moscow, Yaroslavskoe shosse, 26, lina.zagorskaya@gmail.com

Аннотация. В статье рассмотрена взаимосвязь СП «Научно-техническое сопровождение изысканий, проектирования и строительства. Общие положения» (вступил в действие с 01.07.2024) с изменениями в порядке технического регулирования (вступили в действие с 01.09.2024). Целью исследования является анализ основных изменений в порядке технического регулирования строительной отрасли и ключевых положений свода правил в части научно-технического сопровождения (НТС) как одного из инструментов при обосновании принимаемых проектных решений. При проведении анализа использованы общенаучные методы (анализ и синтез, обобщение, опосредованное описание). Согласно проведённому анализу, в связи с изменениями в системе технического регулирования

Abstract. The article considers the relationship of the joint venture "Scientific and technical support of research, design and construction. General provisions" (entered into force on 07/01/2024), with changes in the order of technical regulation (entered into force on 09/01/2024). The purpose of the study is to analyze the main changes in the order of technical regulation of the construction industry and the key provisions of the code of rules in terms of scientific and technical support (NTS), as one of

строительной отрасли с 1 сентября 2024 года, НТС является одним из основных инструментов, применяемых для обоснования надёжности и механической безопасности проектных решений. Целью НТС также может являться оптимизация проектных решений за счёт решения наукоёмких задач. При разработке и обосновании стандартов организаций (СТО) целесообразно привлечение специализированных научно-исследовательских организаций в рамках НТС.

Ключевые слова: требования действующих нормативнотехнических документов, научно-техническое сопровождение (HTC), надёжность и механическая безопасность, обоснование безопасности.

the tools in justifying design decisions. The analysis uses general scientific methods (analysis and synthesis, generalization, indirect description). According to the analysis, due to changes in the system of technical regulation of the construction industry since September 1, 2024, the NTS is one of the main tools used to substantiate the reliability and mechanical safety of design solutions. The purpose of the NTS may also be to optimize design solutions by solving knowledge-intensive tasks. When developing and

substantiating standards of organizations (STO), it is advisable to involve specialized research organizations within the framework of the NTS.

Введение

В мае 2024 года утверждён [1] Свод правил 539.1325800.2024 (далее – Свод правил) [2]. В Своде правил определены цели НТС, решаемые в рамках НТС задачи, а также приведены требования к результату работ НТС. Целями НТС при этом являются как обеспечение надёжности и механической безопасности проектируемых и строящихся зданий и сооружений, так и работы в интересах заказчика, в т. ч. по оптимизации проектных решений за счёт формирования «второго мнения» и решения наукоёмких задач.

В Федеральный закон внесены изменения [3], которые вступают в силу с 01.09.2024.

Целью настоящей статьи является анализ взаимосвязи внесённых изменений и НТС как инструмента обеспечения соответствия проектных решений требованиям механической безопасности. Для достижения поставленной цели в статье рассмотрены основные изменения в порядке технического регулирования, а также ключевые положения свода правил в части НТС как одного из инструментов при обосновании принимаемых проектных решений.

Научная новизна состоит в определении места научно-технического сопровождения в обновлённой системе технического регулирования строительной отрасли с учётом изменений технического регламента о безопасности зданий и сооружений.

Материалы и методы

При проведении анализа использованы общенаучные методы (анализ и синтез, обобщение, опосредованное описание).

Свод правил НТС

С учётом разрозненных положений в части НТС, приведённых в действующих нормативных документах (подробный анализ положений нормативно-технических документов в части НТС выполнен в работах [4; 5]), в СП [2] сформулированы наиболее полные и актуальные определения понятий «научно-техническое сопровождение», «специализированная научно-исследовательская организация», «контроль качества проектирования» и иные определения, с учётом положений [6].

С учётом изменений в 384-ФЗ [7; 3], которые применяются с 1 сентября 2024 года, в СП 539 [2] предусмотрены положения, направленные на разработку мероприятий и способов обоснования данных мероприятий при проектировании, в том числе:

- п. 5.1 (о выполнении НТС для подтверждения соответствия конструктивных решений);
- п. 6.5.6 (о возможности выполнять работы по обоснованию механической безопасности в рамках HTC):
- п. 9.1.3 (о необходимости привлечения НТС при применении способов обоснования безопасности).

Исходя из вышеизложенного, такой механизм, как НТС, становится одним из ключевых инструментов при обосновании принимаемых в проекте решений.

Взаимосвязь реализации НТС с вновь вводимыми изменениями в строительно-техническом нормировании

Федеральный закон [3] внёс существенные изменения

Keywords: requirements of current regulatory and technical documents, scientific and technical support (NTS), reliability and mechanical safety, safety justification.

в порядок принятия решений при подготовке проектной документации. В частности, при проектировании появились новые способы обоснования технических решений, влияющих на все виды безопасности, перечисленные в [7], при этом был отменён способ обоснования в виде разработки и утверждения общестроительных СТУ. Положения [7] предусматривают применение одного или нескольких документов, обеспечивающих соблюдение требований 384-ФЗ:

- 1. «Национальные стандарты Российской Федерации» (далее - национальные стандарты) и (или) своды правил (часть национального стандарта и (или) часть свода правил) [7];
- 2. «Международные стандарты, региональные стандарты и региональные своды правил, стандарты иностранных государств и своды правил иностранных государств» [7];
- 3. «Стандарты организаций» [7];
- 4. «Результаты применения предусмотренных частью 6 статьи 15 настоящего Федерального закона способов обоснования соответствия архитектурных, функционально-технологических, конструктивных, инженерно-технических и иных решений и мероприятий по обеспечению безопасности зданий, сооружений, процессов, осуществляемых на всех этапах их жизненного цикла, требованиям, установленным настоящим Федеральным законом, утверждённые лицом, осуществляющим подготовку проектной документации» (далее - «способы обоснования») [7].

Согласно Постановлению [9], определены требования к структуре, составу, содержанию и оформлению «способов обоснования», предусмотренных в [7]:

- Основная часть должна содержать подробное описание, включая исследования, расчёты, испытания, моделирование, оценку рисков.
- Выводы должны обосновывать достоверность, достаточность и соответствие результатов требованиям Федерального закона.
- Сведения об исполнителях должны включать реквизиты юридических лиц, индивидуальных предпринимателей и физических лиц, участвовавших в подготовке результатов.
- К результатам применения способов обоснования прилагаются соответствующие документы и мате-
- Обоснование утверждается лицом, ответственным за подготовку проектной документации, в лице главного инженера проекта.

На сегодняшний день для выполнения вышеуказанных требований в явном виде возникает необходимость использования такого инструмента, как НТС [13-18], так как в основном их может выполнить только специализированная научно-исследовательская организация [2] по поручению лица, осуществляющего подготовку проектной документации.

Важным аспектом применения НТС является возможность оптимизации проектных решений за счёт решения наукоёмких задач. В рамках НТС специализированные

научно-исследовательские организации могут выполнять комплексные исследования, направленные на повышение эффективности проектных решений, снижение материалоёмкости, а также улучшение эксплуатационных характеристик зданий и сооружений. Например, с помощью численного моделирования и экспериментальных исследований могут быть оптимизированы конструктивные схемы, подобраны рациональные сечения несущих элементов. Выводы, полученные в ходе научно-технического сопровождения, дают возможность проектировщикам принимать аргументированные решения, которые не только соответствуют нормативным требованиям, но и учитывают пожелания заказчика. В результате НТС становится эффективным способом улучшения качества и результативности проектных разработок.

Ещё одним из достаточно интересных и доступных, согласно нововведениям в 384-ФЗ [7], является механизм применения стандартов организаций (далее - СТО). Разрабатываемые и применяемые СТО должны использоваться для обоснования требований, содержащихся в [2]. СТО разрабатываются в соответствии с ГОСТ [10], после чего проект СТО необходимо провести через процедуру экспертизы в профильном техническом комитете в соответствии с приказом Минпромторга России [11] и пройти процедуру регистрации в Росстандарте в порядке, предусмотренном приказом Росстандарта [12].

Результаты применения данного механизма в виде зарегистрированных СТО можно применять многократно, заинтересованным лицом является заказчик, что исключает случаи экономически необоснованного применения. Согласно действующему законодательству, положения СТО могут отличаться от положений сводов правил при приведении соответствующих обоснований при их разработке. Всё так же данные обоснования базируются в основном на результатах проведённых или проводимых исследований, испытаний или расчётов.

Данный путь так же требует участия специализированных научно-исследовательских организаций, потому что практика показывает, что преимущественное количество нормативных документов в области строительства, таких

СТРОИТЕЛЬНОЕ ПРОИЗВОДСТВО № 4 (52)'2024 как ГОСТ и СП, разработаны именно научными организациями или при их сопровождении. Результаты На основании проведённого анализа изменений нормативно-правовой базы и роли научно-технического сопровождения получены следующие результаты.

1. Выявлены ключевые изменения в законодательстве: введение СП 539.1325800.2024, регламентирующего порядок проведения НТС; отмена необходимости разработки общестроительных СТУ с 01.09.2024; расширение «способов обоснования» технических решений.

2. Актуализирована роль НТС в системе технического регулирования: НТС становится обязательным инструментом при отступлении от требований нормативных документов; HTC является одним из «способов обоснования» и обеспечивает контроль качества проектных реше-

3. Рассмотрены основные задачи НТС на этапе проектирования, в том числе верификация расчётных моделей и методов; возможность оценки технических решений на соответствие требованиям безопасности, разработка рекомендаций по оптимизации проектных решений.

Заключение

- 1. Рассмотрены изменения в порядке технического регулирования в строительной сфере (вступили в действие с 01.09.24) и ключевые положения СП 539.1325800.
- 2. С учётом вступивших в силу изменений, НТС становится одним из ключевых инструментов при обосновании принимаемых проектных решений.
- 3. НТС может выполняться как для обеспечения надёжности и механической безопасности объектов НТС, так и в интересах заказчика, в т. ч. в части обоснования применяемых проектных решений, их оптимизации путём решения наукоёмких задач.
- 4. При разработке и обосновании стандартов организаций (СТО) целесообразно привлечение специализированных научно-исследовательских организаций в рамках НТС.

СПИСОК ЛИТЕРАТУРЫ

- 1. Об утверждении свода правил «Научно-техническое сопровождение инженерных изысканий, проектирования и строительства. Общие положения»: Приказ Министерства строительства и жилищно-коммунального хозяйства Российской Федерации № 353/пр от 27 мая 2024 года // Минстрой России. - Москва, 2024.
- 2. Научно-техническое сопровождение инженерных изысканий, проектирования и строительства. Общие положения: СП 539.1325800.2024 : Свод правил : утверждён приказом Министерства строительства и жилищно-коммунального хозяйства Российской Федерации № 353/пр от 27 мая 2024 года: введён в действие с 28 июня 2024 года / разработан ФГБОУ ВО «Национальный исследовательский Московский государственный строительный университет» (НИУ МГСУ), ООО «Научно-исследовательский институт проектирования, технологии и экспертизы строительства» (ООО «НИИ ПТЭС») // Минстрой России. - Москва : Росстандарт. 2024. - 90 с. - Издание официальное.
- 3. О внесении изменений в Федеральный закон «Технический регламент о безопасности зданий и сооружений» и отдельные законодательные акты Российской Федерации: Федеральный закон от 25.12.2023 № 653-ФЗ : принят Государственной Думой 15 декабря 2023 года : одобрен Со-

- ветом Федерации 22 декабря 2023 года. Официальный интернет-портал правовой информации www.pravo.gov.ru, 25.12.2023, № 0001202312250053. - 2023.
- Лапидус, А. А. Анализ действующих нормативных документов, в части научно-технического сопровождения проектирования зданий и сооружений, имеющих повышенный уровень ответственности / А. А. Лапидус, А. В. Шистерова // Системные технологии. – 2019. – № 1 (30). – С. 5–10.
- Лапидус, А. А. Научно-техническое сопровождение изысканий, проектирования и строительства как обязательный элемент достижения требуемых показателей проекта / А. А. Лапидус. - DOI 10.22227/1997-0935.2019.11.1428-1437 // Вестник МГСУ. – 2019. – Т. 14, № 11 (134). – С. 1428–1437.
- Изменение № 1 к ГОСТ 27751-2014 «Надёжность строительных конструкций и оснований. Основные положения»: принято Межгосударственным советом по стандартизации, метрологии и сертификации протоколом № 156-П от 22.11.22 : введено в действие на территории Российской Федерации 01.02.2023. - Москва: Стандартинформ, 2023. -
- Технический регламент о безопасности зданий и сооружений : Федеральный закон от 30.12.2009 № 384-ФЗ : текст с изменениями, вступающими в силу с 01.09.24 : принят Государственной Думой 23 декабря 2009 года: одобрен Со-

58

59

- ветом Федерации 25 декабря 2009 года. Москва, 2009.
- 8. Градостроительный кодекс Российской Федерации от 29.12.2004 № 190-ФЗ : ред. от 01.05.2024 : принят Государственной Думой 22 декабря 2004 года : одобрен Советом Федерации 24 декабря 2004 года. Москва, 2004.
- 9. Об утверждении требований к содержанию результатов применения предусмотренных частью 6 статьи 15 Федерального закона «Технический регламент о безопасности зданий и сооружений» способов обоснования соответствия архитектурных, функционально-технологических, конструктивных, инженерно-технических и иных решений и мероприятий по обеспечению безопасности зданий, сооружений, процессов, осуществляемых на всех этапах их жизненного цикла, требованиям, установленным указанным Федеральным законом, порядку их подготовки и утверждения: Постановление Правительства РФ от 30.05.2024 № 708: вступает в силу с 1 сентября 2024 г. и действует до 31 августа 2030 г. включительно. Официальный интернетпортал правовой информации www.pravo.gov.ru, 30.05.2024, № 0001202405300041. 2024.
- 10. Стандартизация в Российской Федерации. Стандарты организаций. Общие положения: ГОСТ Р 1.4-2004: Национальный стандарт Российской Федерации: утверждён и введён в действие приказом Росстандарта от 30.12.2004 № 154-ст: дата введения 01.07.2005 / разработан ФГУП «Всероссийский научно-исследовательский институт стандартизации». Москва: Росстандарт, 2005.
- 11. Об утверждении Порядка проведения экспертизы проектов стандартов организаций, а также проектов технических условий, представляемых разработчиком в соответствующие технические комитеты по стандартизации или проектные технические комитеты по стандартизации: Приказ Министерства промышленности и торговли Российской Федерации от 06.07.2017 № 2171: зарегистрировано в Министерстве юстиции Российской Федерации 3 августа 2017 года, регистрационный № 47658 / Официальный интернет-портал правовой информации www.pravo.gov.ru, 03.08.2017, № 0001201708030054. 2017.
- 12. Об определении Порядка регистрации стандартов органи-

REFERENCES

- Ob utverzhdenii svoda pravil «Nauchno-tekhnicheskoe soprovozhdenie inzhenernykh izyskanij, proektirovaniya i stroitel'stva. Obshhie polozheniya» [On approval of the set of rules "Scientific and technical support of engineering surveys, design and construction. General provisions"]: Prikaz Ministerstva stroitel'stva i zhilishno-kommunal'nogo khozyajstva Rossijskoj Federatsii № 353/pr ot 27 maya 2024 goda [Order of the Ministry of Construction and Housing and Communal Services of the Russian Federation No. 353/pr dated May 27, 2024] // Minstroj Rossii [Ministry of Construction of Russia]. Moscow, 2024.
- 2. Nauchno-tekhnicheskoe soprovozhdenie inzhenernykh izyskanij, proektirovaniya i stroitel'stva. Obshhie polozheniya: SP 539.1325800.2024 [Scientific and technical support of engineering surveys, design and construction. General provisions : SP 539.1325800.2024] : Svod pravil : utverzhdyon prikazom Ministerstva stroitel'stva i zhilishhno-kommunal'noqo khozyajstva Rossijskoj Federatsii № 353/pr ot 27 maya 2024 goda : vvedyon v dejstvie s 28 iyunya 2024 goda [Set of Rules : approved by Order of the Ministry of Construction and Housing and Communal Services of the Russian Federation No. 353/pr dated May 27, 2024 : effective June 28, 2024] / FGBOU VO «Natsional'nyi issledovateľskij Moskovskij gosudarstvennyj stroiteľnyj universitet» (NIU MGSU), 000 «Nauchno-issledovatel'skij institut proektirovaniya, tekhnologii i ehkspertizy stroitel'stva» (OOO «NII PTEHS») [National Research Moscow State University of Civil Engineering (NRU MGSU), Scientific

- заций, в том числе технических условий, в Федеральном информационном фонде стандартов: Приказ Федерального агентства по техническому регулированию и метрологии от 30.04.2021 № 651: зарегистрировано в Министерстве юстиции Российской Федерации 2 июля 2021 года, регистрационный № 64088 / Официальный интернет-портал правовой информации www.pravo.gov.ru, 02.07.2021, № 0001202107020110. Москва: Минстрой, 2021.
- 13. Леонтьев, Е. В. Научно-техническое сопровождение при проектировании объектов производственного и гражданского назначения повышенного уровня ответственности / Е. В. Леонтьев, Р. Ю. Газизов // Вестник государственной экспертизы. 2020. № 1. С. 54–60.
- 14. Лапидус, А. А. Концепция разработки модели программы по научно-техническому сопровождению жизненного цикла уникальных зданий с большим заглублением / А. А. Лапидус, Д. В. Топчий, И. С. Шевченко // Вестник МГСУ. 2022. Т. 17, вып. 3. С. 298–313.
- 15. Научно-техническое сопровождение проектирования и строительства подземных сооружений, как фактор обеспечения единой научно-технической политики / Н. Н. Бычков И. Я. Дорман, С. Г. Елгаев, С. В. Мазеин, В. Е. Меркин, М. А. Мутушев // Метро и тоннели. 2015. № 1. С. 18–19.
- 16. Еремеев, П. Г. Проектирование и возведение металлических конструкций большепролетных уникальных зданий и сооружений / П. Г. Еремеев, И. И. Ведяков // Строительные материалы. 2017. № 4. С. 55 58.
- 17. Adaptive finite-element models in structural health monitoring systems / A. M. Belostotsky, P. A. Akimov, O. A. Negrozov et al. // Magazine of Civil Engineering. 2018. Vol. 78, No. 2. Pp. 169–178.
- 18. Kapyrin, P. The procedural approach to reliability of objects of the raised level of responsibility / P. Kapyrin, N. Sevryugina // IOP Conference Series: Materials Science and Engineering / 21st International Scientific Conference on Advanced in Civil Engineering: Construction The Formation of Living Environment, FORM 2018, Moscow, 25–27 апреля 2018 года. Art. 042018.
 - Research Institute LLC design, technology and expertise of construction" (NII PTPP LLC)] // Minstroj Rossii [Ministry of Construction of Russia]. Moscow: Rosstandart, 2024. 90 p. The publication is official.
- 3. O vnesenii izmenenij v Federal'nyj zakon «Tekhnicheskij reglament o bezopasnosti zdanij i sooruzhenij» i otdel'nye zakonodatel'nye akty Rossijskoj Federatsii [On Amendments to the Federal Law "Technical Regulations on the Safety of Buildings and Structures" and Certain Legislative Acts of the Russian Federation]: Federal'nyj zakon ot 25.12.2023 № 653-FZ [Federal Law No.653-FZ dated December 25, 2023]: prinyat Gosudarstvennoj Dumoj 15 dekabrya 2023 goda: odobren Sovetom Federatsii 22 dekabrya 2023 goda [adopted by the State Duma on December 15, 2023: approved by the Federation Council on December 22, 2023]. The official Internet portal of legal information www.pravo.gov.ru, 12/25/2023, No. 0001202312250053. 2023.
- Lapidus, A. A. Analiz dejstvuyushhikh normativnykh dokumentov, v chasti nauchno-tekhnicheskogo soprovozhdeniya proektirovaniya zdanij i sooruzhenij, imeyushhikh povyshennyj uroven' otvetstvennosti [Analysis of current regulatory documents regarding scientific and technical support for the design of buildings and structures with an increased level of responsibility] / A. A. Lapidus, A. V. Shisterova // Sistemnye tekhnologii [System technologies]. – 2019. – No. 1 (30). – Pp. 5–10.
- 5. Lapidus, A. A. Nauchno-tekhnicheskoe soprovozhdenie izyskanij, proektirovaniya i stroitel'stva kak obyazatel'nyj ehlement dostizheniya trebuemykh pokazatelej proekta

- [Scientific and technical support of surveys, design and construction as a mandatory element of achieving the required project indicators] / A. A. Lapidus. DOI 10.22227/1997-0935.2019.11.1428-1437 // Vestnik MGSU [Bulletin of MGSU]. 2019. Vol. 14, No. 11 (134). Pp. 1428–1437.
- 6. Izmenenie № 1 k GOST 27751-2014 «Nadyozhnost' stroitel'nykh konstruktsij i osnovanij. Osnovnye polozheniya» [Amendment No.1 to GOST 27751-2014 "Reliability of building structures and foundations. Basic provisions"]: prinyato Mezhgosudarstvennym sovetom po standartizatsii, metrologii i sertifikatsii protokolom № 156-P ot 22.11.22 [adopted by the Interstate Council for Standardization, Metrology and Certification by Protocol No. 156-P dated 11/22/12]: vvedeno v dejstvie na territorii Rossijskoj Federatsii 01.02.2023 [put into effect on the territory of the Russian Federation on 02/01/2023]. Moscow: Standartinform, 2023. 11 p.
- 7. Tekhnicheskij reglament o bezopasnosti zdanij i sooruzhenij [Technical Regulations on the safety of buildings and structures] : Federal'nyj zakon ot 30.12.2009 № 384-FZ : tekst s izmeneniyami, vstupayushhimi v silu s 01.09.24 [Federal Law No. 384-FZ of 12/30/2009 : text with amendments effective 09/01/24] : prinyat Gosudarstvennoj Dumoj 23 dekabrya 2009 goda : odobren Sovetom Federatsii 25 dekabrya 2009 goda [adopted by the State Duma on December 23, 2009 : approved by the Federation Council on December 25, 2009]. Moscow, 2009.
- 8. Gradostroitel'nyj kodeks Rossijskoj Federatsii ot 29.12.2004 Nº 190-FZ : red. ot 01.05.2024 [Urban Planning Code of the Russian Federation dated 29.12.2004 No. 190-FZ : ed. Dated 05/01/2024] : prinyat Gosudarstvennoj Dumoj 22 dekabrya 2004 goda : odobren Sovetom Federatsii 24 dekabrya 2004 goda [adopted by the State Duma on December 22, 2004 : approved by the Federation Council on December 24, 2004]. Moscow, 2004.
- 9. Ob utverzhdenii trebovanij k soderzhaniyu rezul'tatov primeneniya predusmotrennykh chast'yu 6 stat'i 15 Federal'nogo zakona «Tekhnicheskij reglament o bezopasnosti zdanij i sooruzhenij» sposobov obosnovaniya sootvetstviya funktsional'no-tekhnologicheskikh. arkhitekturnykh. konstruktivnykh, inzhenerno-tekhnicheskikh i inykh reshenij i meropriyatij po obespecheniyu bezopasnosti zdanij, sooruzhenij, protsessov, osushhestvlyaemykh na vsekh ehtapakh ikh zhiznennogo tsikla, trebovaniyam, ustanovlennym ukazannym Federal'nym zakonom, poryadku ikh podgotovki i utverzhdeniya [On approval of the requirements for the content of the results of the application of the methods provided for in Part 6 of Article 15 of the Federal Law "Technical Regulations on the Safety of Buildings and Structures" to substantiate the compliance of architectural, functional, technological, structural, engineering, technical and other solutions and measures to ensure the safety of buildings, structures, processes carried out at all stages of their life cycle, requirements established by the said Federal Law, the procedure for their preparation and approval]: Postanovlenie Pravitel'stva RF ot 30.05.2024 № 708 [Decree of the Government of the Russian Federation of 30.05.2024 No. 708]: vstupaet v silu s 1 sentyabrya 2024 q. i dejstvuet do 31 avgusta 2030 g. vklyuchiteľno [It comes into force on September 1, 2024 and is valid until August 31, 2030 inclusive]. - Ofitsial'nyj internet-portal pravovoj informatsii www.pravo.gov.ru, 30.05.2024, № 0001202405300041 [The official Internet portal of legal information www.pravo.gov.ru, 30.05.2024, № 0001202405300041]. - 2024.
- 10. Standartizatsiya v Rossijskoj Federatsii. Standarty organizatsij.
 Obshhie polozheniya [Standardization in the Russian Federation. Standards of organizations. General provisions]:
 GOST R 1.4-2004: Natsional'nyj standart Rossijskoj Federatsii
 [GOST R 1.4-2004: National Standard of the Russian

СТРОИТЕЛЬНОЕ ПРОИЗВОДСТВО № 4 (52)'2024

- Federation]: utverzhdyon i vvedyon v dejstvie prikazom Rosstandarta ot 30.12.2004 № 154-st [approved and put into effect by Rosstandart Order No. 154 dated 12/30/2004]: data vvedeniya 01.07.2005 [date of introduction 07/01/2005] / razrabotan FGUP «Vserossijskij nauchno-issledovateľskij institut standartizatsii» [developed by FSUE "All-Russian Scientific Research Institute of Standardization"]. Moscow: Rosstandart Publ., 2005.
- 11. Ob utverzhdenii Poryadka provedeniya ehkspertizy proektov standartov organizatsij, a takzhe proektov tekhnicheskikh uslovij, predstavlyaemykh razrabotchikom v sootvetstvuyushhie tekhnicheskie komitety po standartizatsii ili proektnye tekhnicheskie komitety po standartizatsii [On approval of the Procedure for the Examination of draft standards of organizations, as well as draft technical specifications submitted by the developer to the relevant technical committees for Standardization or design Technical committees for Standardization]: Prikaz Ministerstva promyshlennosti i torgovli Rossijskoj Federatsii ot 06.07.2017 № 2171 [Order of the Ministry of Industry and Trade of the Russian Federation dated 07/06/2017 No. 2171] : zaregistrirovano v Ministerstve yustitsii Rossijskoj Federatsii 3 avgusta 2017 goda, registratsionnyi № 47658 [registered with the Ministry of Justice of the Russian Federation on August 3, 2017, registration No. 47658] / Ofitsial'nyj internet-portal pravovoj informatsii www.pravo. gov.ru, 03.08.2017, № 001201708030054 [Official online portal of legal information www.pravo.gov.ru, 08/03/2017, No. 0001201708030054]. - 2017.
- 12. Ob opredelenii Porvadka registratsii standartov organizatsii. v tom chisle tekhnicheskikh uslovij, v Federal'nom informatsionnom fonde standartov [On determining the Procedure for Registration of Standards of organizations, including Technical Specifications, in the Federal Information Fund of Standards]: Prikaz Federal'nogo agentstva po tekhnicheskomu regulirovaniyu i metrologii ot 30.04.2021 № 651 [Order of the Federal Agency for Technical Regulation and Metrology dated 30.04.2021 No. 651]: zaregistrirovano v Ministerstve yustitsii Rossijskoj Federatsii 2 iyulya 2021 goda, registratsionnyi № 64088 [registered with the Ministry of Justice of the Russian Federation on July 2, 2021, registration No. 640881 / Ofitsial'nyi internet-portal prayovoi informatsii www.pravo.gov.ru, 02.07.2021, № 0001202107020110 [Official Internet Portal of Legal Information www.pravo.gov. ru, 02.07.2021, No. 0001202107020110]. - Moscow: Minstroy, 2021.
- 13. Leontiev, E. V. Nauchno-tekhnicheskoe soprovozhdenie pri proektirovanii ob"ektov proizvodstvennogo i grazhdanskogo naznacheniya povyshennogo urovnya otvetstvennosti [Scientific and technical support in the design of industrial and civil facilities with an increased level of responsibility] / E. V. Leontiev, R. Yu. Gazizov // Vestnik gosudarstvennoj ehkspertizy [Bulletin of State Expertise]. 2020. No. 1. Pp. 54–60.
- 14. Lapidus, A. A. Kontseptsiya razrabotki modeli programmy po nauchno-tekhnicheskomu soprovozhdeniyu zhiznennogo tsikla unikal'nykh zdanij s bol'shim zaglubleniem [The concept of developing a program model for scientific and technical support of the life cycle of unique buildings with a large depth] / A. A. Lapidus, D. V. Topchy, I. S. Shevchenko // Vestnik MGSU [Bulletin of MGSU]. 2022. Vol. 17, Iss. 3. Pp. 298–313.
- 15. Nauchno-tekhnicheskoe soprovozhdenie proektirovaniya i stroitel'stva podzemnykh sooruzhenij,kak faktor obespecheniya edinoj nauchno-tekhnicheskoj politiki [Scientific and technical support for the design and construction of underground structures as a factor in ensuring a unified scientific and technical policy] / N. N. Bychkov, I. Ya. Dorman, S. G. Yelgaev,

60

- S. V. Mazein, V. E. Merkin, M. A. Mutushev // Metro i tonneli [Metro and tunnels]. 2015. No. 1. Pp. 18–19.
- 16. Eremeev, P. G. Proektirovanie i vozvedenie metallicheskikh konstruktsij bol'sheproletnykh unikal'nykh zdanij i sooruzhenij [Design and construction of metal structures of large-span unique buildings and structures] / P. G. Eremeev, I. I. Vedyakov // Stroitel'nye materialy [Building materials]. 2017. No. 4. Pp. 55–58.
- 17. Adaptive finite-element models in structural health monitoring systems / A. M. Belostotsky, P. A. Akimov, O. A. Negrozov et al. //
- Magazine of Civil Engineering. 2018. Vol. 78, No. 2. Pp. 169–178.
- 18. Kapyrin, P. The procedural approach to reliability of objects of the raised level of responsibility / P. Kapyrin, N. Sevryugina // IOP Conference Series: Materials Science and Engineering / 21st International Scientific Conference on Advanced in Civil Engineering: Construction The Formation of Living Environment, FORM 2018, Moscow, 25–27 апреля 2018 года. Art. 042018.

УДК 69.057.53 DOI: 10.54950/26585340_2024_4_62

Оценка продолжительности опалубочных работ по ГЭСН

Estimation of the Duration of Shuttering Operations According to the State Elementary Cost Estimates

Кабанов Вадим Николаевич

Доктор экономических наук, профессор кафедры «Технологии и организация строительного производства», ФГБОУ ВО «Национальный исследовательский Московский государственный строительный университет» (НИУ МГСУ), Россия, 129337, Москва, Ярославское шоссе, 26, kabanovvn@yandex.ru

Kabanov Vadim Nikolaevich

Doctor of Economic Sciences, Professor of the Department of Technologies and Organization of Construction Production, National Research Moscow State University of Civil Engineering (NRU MGSU), Russia, 129337, Moscow, Yaroslavskoe shosse, 26, kabanovvn@yandex.ru

Бородкин Кирилл Юрьевич

Аспирант кафедры «Технологии и организация строительного производства», ФГБОУ ВО «Национальный исследовательский Московский государственный строительный университет» (НИУ МГСУ), Россия, 129337, Москва, Ярославское шоссе, 26, borodkin101010@gmail.com

Borodkin Kirill Yurievich

Postgraduate student of the Department of Technologies and Organization of Construction Production, National Research Moscow State University of Civil Engineering (NRU MGSU), Russia, 129337, Moscow, Yaroslavskoe shosse, 26, borodkin101010@gmail.com

Аннотация. Статья посвящена исследованию проблем, связанных с недостоверностью представляемых в государственных сметных нормативах значений трудозатрат на разные виды работ по устройству опалубки или работ по возведению перекрытий разной толщины, в которые включена опалубка, а также продолжительности производства работ по её устройству. Основная мысль статьи заключается в том, что существующие нормативы и стандарты труда, такие как ГЭСН, не могут обеспечивать проектные организации достоверными для планирования строительных проектов данными, что может приводить к значительным расхождениям в расчётах продолжительности и трудозатрат на выполнение опалубочных работ и впоследствии к увеличению стоимости строительства и потенциальным задержкам в части ввода объекта в эксплуатацию.

В статье описаны факторы, так или иначе влияющие на задержки в строительстве. Особенность труда по устройству опалубки акцентируется на его временном характере и необходимости многократного использования конструкций, что подчёркивает важность стандартов, регулирующих данный

Abstract. The article is devoted to the study of problems related to the unreliability of labor costs presented in state estimates for various types of work on the construction of formwork, or work on the construction of floors of different thicknesses, which include formwork, as well as the duration of work on its device. The main idea of the article is that existing labor standards and standards, such as GESN, cannot provide design organizations with reliable data for planning construction projects, which can lead to significant discrepancies in the calculations of the duration and labor costs for performing formwork work, and, subsequently, to an increase in the cost of construction and potential delays in part commissioning of the facility.

The article describes the factors that in one way or another

процесс.

Данная работа рассматривает анализ расценок ГЭСН для работ по устройству опалубки, рассчитываются трудозатраты и минимально необходимое количество рабочей силы для выполнения данных работ. Проведённые расчёты демонстрируют, что разница в продолжительности выполнения различных видов работ может достигать 200 %, что подчёркивает необходимость тщательного выбора нормативов.

В условиях современных строительных проектов зачастую возникает необходимость в более точных методах оценки трудозатрат и временных рамок, чтобы минимизировать потенциальные издержки.

В заключение, автор статьи рекомендует использовать цифровую модель для более точного планирования опалубочных работ, что могло бы значительно улучшить точность расчётов и снизить риски, связанные с неправильной трактовкой действующих стандартов.

Ключевые слова: опалубка, продолжительность работ, трудозатраты, перекрытие, количество рабочих, технология.

affect delays in construction. The peculiarity of the formwork work is emphasized on its temporary nature and the need for repeated use of structures, which emphasizes the importance of standards governing this process.

This work examines the analysis of GASN prices for formwork construction, calculates labor costs and the minimum required amount of labor to perform these works. The calculations performed demonstrate that the difference in the duration of various types of work can reach 200%, which emphasizes the need for careful selection of standards.

In the context of modern construction projects, there is often a need for more accurate methods of estimating labor costs and time frames in order to minimize potential costs. In conclusion, the author of the article recommends using a digital model for more accurate planning of formwork works, which could significantly improve the accuracy of calculations and reduce the risks associated with incorrect interpretation of

Введение

Строительное производство с точки зрения системотехники — набор взаимосвязанных строительных работ, целью и результатом которых является возведённое здание или сооружение, готовое к эксплуатации [1].

Важным аспектом строительства в целом является продолжительность работ, которая в большинстве случаев становится «камнем преткновения» на пути успешной реализации строительных проектов. Затянувшиеся сроки строительства — в современном мире рядовой случай, на который оказывает воздействие множество факторов, некоторые из них — это:

- 1. Проблемы с финансированием строительства [2; 3];
- 2. Наличие квазиработ на строительной площадке (работы, не включённые в календарный план строительства) [4; 5];
- 3. Постоянные корректировки проектной документации [6; 7];
- Выявленная в процессе производства работ сложность их выполнения (в особенности это касается технически сложных и уникальных объектов строительства) [8; 9];
- Низкое качество и задержки сроков поставки материалов.

Прогнозирование проектной продолжительности строительства производится путём построения сетевого графика производства работ, и искомым значением будет являться критический путь, представленный как сумма всех работ, на нём лежащих [10; 11].

Одной из наиболее трудоёмких и продолжительных работ в процессе непосредственного возведения зданий и сооружений является устройство опалубки поверхностей – горизонтальных (перекрытия, балки) и вертикальных (стены и колонны). [12; 13].

Опалубка представляет собой временную конструкцию, используемую в строительстве для придания бетону требуемой геометрии и размера будущих элементов здания (стен, колонн, перекрытий, фундаментов). Её назначение — обеспечение необходимой формы, размеров и качества бетонной конструкции до достижения бетоном достаточной прочности. Временный характер опалубки обуславливает необходимость её многократного использования и, следовательно, требования к прочности, устойчивости, лёгкости сборки-разборки и транспортабельности.

В области опалубки и отдельных её видов в данный момент действует несколько государственных нормативных документов — это:

- 1. ГОСТ 34329-2017 «Опалубка. Общие технические условия»;
- 2. ГОСТ Р 59936-2021 «Опалубка крупнощитовая. Общие технические условия»;
- 3. СП 371.1325800.2017 «Опалубка. Правила проектирования».

Государственные стандарты содержат в себе все термины и определения, так или иначе связанные с работой по устройству опалубки, классификацию (мелкощитовая, крупнощитовая, объёмно-переставная и пр.), то, по каким

СТРОИТЕЛЬНОЕ ПРОИЗВОДСТВО № 4 (52)'2024

current standards.

Keywords: formwork, duration of work, labor costs, overlap, number of workers, technology.

принципам опалубка делится на классы (всего 3 класса, главный принцип — оборачиваемость и величина углов фанерных листов опалубки), а также требования к её установке.

Свод правил на проектирование опалубки описывает правила конструирования, требования к материалам, правила расчётов и сборок нагрузок.

Целью работы является определение отличий в продолжительности и трудоёмкости выполнения работ по возведению опалубки перекрытий в таблицах ГЭСН.

Задачі

- 1. Вычислить продолжительность выполнения различных видов работ по опалубке перекрытия заданных размеров с использованием нормативов ГЭСН.
- 2. Определить минимальное количество рабочих, требуемых для возведения различных видов опалубки перекрытия в указанный срок, с помощью нормативов, установленных ГЭСН.
- 3. Определить разницу в трудозатратах и продолжительности производства работ между различными вариантами устройства опалубки в ГЭСН.

Материалы и методы

За основу в качестве исходных данных было принято решение использовать перекрытие следующих размеров: длина 48 м, ширина 24 м, толщина перекрытия 0,2 м, площадь $1152~{\rm M}^2$ и, соответственно, объём 230,4 м³. Также, как видно из целей и задач, было принято использовать нормативы ГЭСН, а именно «Сборник 6. Бетонные и железобетонные конструкции монолитные».

Для решения поставленных задач необходимо прибегнуть к математическому расчёту продолжительности выполнения работ по устройству опалубки и расчёту требуемого количества рабочих.

В качестве оперируемых значений используется следующий набор:

- 1. Трудозатраты. Данная переменная является расчётной, базовые значения приведены в ГЭСН, далее происходит перерасчёт под требуемую площадь перекрытия;
- 2. Количество рабочих. 8 человек было принято в качестве рабочих;
- 3. Количество смен в день 2 смены;
- 4. Количество рабочих часов в 1 смене 8 часов.

Расчёт продолжительности производства работ производится по следующей формуле (1):

$$t_i = \frac{H_i}{N_{nab} * N_{chen} * N_{vac}},\tag{1}$$

где t_i — расчётная продолжительность устройства опалубки, дней; H_i — трудоёмкость работы, чел./ч; $N_{\it pab}$ — количество рабочих, чел.; $N_{\it cmen}$ — количество смен в сутки, шт.; $N_{\it vac}$ — количество часов в смену.

По аналогичной формуле происходит расчёт требуемого количества рабочих для выполнения работы в указанный срок (2):

$$N_{pa\delta} = \frac{H_i}{t_i * N_{out} * N_{out}}.$$
 (2)

Результаты

Прежде чем приступать непосредственно к расчёту, необходимо изучить вводные главы в сборнике ГЭСН. Ввиду того что не все позиции, рассматриваемые в дальнейшем, содержат в себе исключительно устройство опалубки, необходимо понимать, какой коэффициент (или какая доля) трудозатрат используется на опалубочные работы.

Согласно пункту 44 раздела 6 части 1 ГЭСН, при распределении затрат на выполнение бетонных работ (монтаж опалубки – армирование – бетонирование – выдерживание – демонтаж опалубки) доля опалубки и в случаях армирования конструктивного элемента, и также при отсутствии данного вида работ составляет 25 % от общего значения затрат [12].

Итак, как видно по исходным данным, разброс расценок по устройству опалубки достаточно сильно сокращается. Под те условия, когда рассматриваемый конструктивный элемент — перекрытие, а его толщина составляет 0,2 м, подходят следующие виды работ согласно ГЭСН:

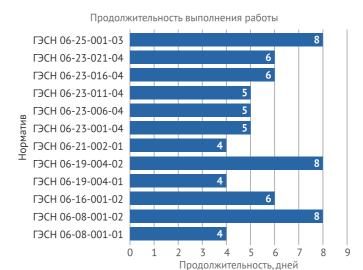
- 1. ГЭСН 06-08-001-01. Устройство перекрытий безбалочных толщиной: до 200 мм на высоте от опорной площади до 6 м.
- 2. ГЭСН 06-08-001-02. Устройство перекрытий безбалочных толщиной: до 200 мм на высоте от опорной площади более 6 м.
- 3. ГЭСН 06-16-001-02. Монтаж и демонтаж крупнощитовой опалубки перекрытий.
- 4. ГЭСН 06-19-004-01. Устройство железобетонных перекрытий и покрытий толщиной до 200 мм в инвентарной опалубке (подача бетона в бадьях) на высоте от опорной площадки: до 6 м.
- 5. ГЭСН 06-19-004-02. Устройство железобетонных перекрытий и покрытий толщиной до 200 мм в инвентарной опалубке (подача бетона в бадьях) на высоте от опорной площадки: более 6 м.
- 6. ГЭСН 06-21-002-01. Устройство железобетонных перекрытий в инвентарной опалубке (подача бетона автобетононасосом) толщиной до 200 мм, с изготовлением арматурных каркасов (сеток).
- 7. ГЭСН 06-23-001-04. Монтаж опалубки монолитных железобетонных конструкций надземной части зданий, при высоте здания до 30 м: перекрытия.

- 8. ГЭСН 06-23-006-04. Монтаж опалубки монолитных железобетонных конструкций надземной части зданий, при высоте здания свыше 30 м до 40 м: перекрытия.
- 9. ГЭСН 06-23-011-04. Монтаж опалубки монолитных железобетонных конструкций надземной части зданий, при высоте здания свыше 40 м до 57 м: перекрытия.
- 10. ГЭСН 06-23-016-04. Монтаж опалубки монолитных железобетонных конструкций надземной части зданий, при высоте здания свыше 57 м до 75 м: перекрытия.
- 11. ГЭСН 06-23-021-04. Монтаж опалубки монолитных железобетонных конструкций надземной части зданий, при высоте здания свыше 75 м до 105 м: перекрытия.
- 12. ГЭСН 06-25-001-03. Монтаж опалубки монолитных железобетонных конструкций перекрытий.

Отобранные позиции в большинстве своём имеют разные единицы измерения — от 10 м² до 100 м³. Так как опалубка считается в квадратных метрах, за унифицированную единицу измерения было принято 100 м².

Приведение позиций, имеющих в качестве единицы измерения объём 100 м³, к унифицированной единице было выполнено с учётом добавленной переменной — толщины перекрытия, к тому же, она известна и задана в исходных данных.

Исходя из того, что в перекрытии объёмом $100 \, \text{м}^3$, толщиной $0.2 \, \text{м}$ заложено $500 \, \text{м}^2$, соответственно, трудозатраты на $100 \, \text{м}^3$ делятся на 5, что даёт итоговый результат на необходимую единицу измерения.


После приведения всех расценок к унифицированной единице измерения и расчёта суммарных трудозатрат на устройство опалубки перекрытия заданного размера необходимо понять, насколько сильно разнятся между собой все эти расценки.

Для того, чтобы разобраться в поставленных задачах, следует определить продолжительность возведения перекрытия по заданному количеству рабочих и выполнить обратную процедуру. Эти параметры становятся известны благодаря описанным ранее формулам (1, 2).

Результат произведённых вычислений представлен в таблице 1.

Nº nn.	Номер расценки	Трудозатраты, чел./ч	Заданная численность бригады	Минимальное количество дней	Заданное количество дней	Минимальная численность бригады
1	ГЭСН 06-08-001-01	464,256000	8	4	6	5
2	ГЭСН 06-08-001-02	898,560000	8	8	6	10
3	ГЭСН 06-16-001-02	748,800000	8	6	6	8
4	ГЭСН 06-19-004-01	480,153600	8	4	6	6
5	ГЭСН 06-19-004-02	982,368000	8	8	6	11
6	ГЭСН 06-21-002-01	428,462208	8	4	6	5
7	ГЭСН 06-23-001-04	572,428800	8	5	6	6
8	ГЭСН 06-23-006-04	593,049600	8	5	6	7
9	ГЭСН 06-23-011-04	627,148800	8	5	6	7
10	ГЭСН 06-23-016-04	646,387200	8	6	6	7
11	ГЭСН 06-23-021-04	663,782400	8	6	6	7
12	ГЭСН 06-25-001-03	929,318400	8	8	6	10

Табл. 1. Расчёт продолжительности производства работ и требуемого количества рабочих **Таb. 1.** Calculation of the duration of work and the required number of workers

Рис. 1. Диаграмма продолжительности выполнения работ по расценкам

Fig. 1. Diagram of the duration of work at the rates

В таблице 1 наглядно продемонстрирована проблема в разницах продолжительности производства различных опалубочных работ, также в определении требуемого количества рабочих.

Например, по первой задаче наименее затратных и наименее продолжительных работ — три (все они продолжительностью 4 дня), это:

- 1. Устройство перекрытий безбалочных толщиной: до 200 мм на высоте от опорной площади до 6 м;
- 2. Устройство железобетонных перекрытий и покрытий толщиной до 200 мм в инвентарной опалубке (подача бетона в бадьях) на высоте от опорной площадки: до 6 м;
- 3. Устройство железобетонных перекрытий в инвентарной опалубке (подача бетона автобетононасосом) толщиной до 200 мм, с изготовлением арматурных каркасов (сеток).

В то же время наиболее продолжительных работ также три вида, это:

- 1. Устройство перекрытий безбалочных толщиной: до 200 мм на высоте от опорной площади более 6 м;
- 2. Устройство железобетонных перекрытий и покрытий толщиной до 200 мм в инвентарной опалубке (подача бетона в бадьях) на высоте от опорной площадки: более 6 м;
- 3. Монтаж опалубки монолитных железобетонных конструкций перекрытий.

Для более наглядного представления информации результаты обеих задач были сведены в две диаграммы. Диаграмма, отображающая сравнение продолжительности выполнения работ по заданному количеству рабочих, представлена на рисунке 1.

Как можно заметить в таблице 1 и на рисунке 1, наиболее продолжительная расценка и наименее продолжительная разнятся в 2 раза. В основном, такая разница обусловлена тем, какую высоту имеет этаж (на какой высоте от забетонированного перекрытия находится следующая возводимая горизонтальная несущая конструкция).

Как было упомянуто ранее, а также продемонстрировано в таблице 1, одной из задач было прибегнуть к обратной процедуре. При фиксированном количестве дней необходимо было определить требуемое количество рабочих для выполнения каждой из работ. В данном случае

СТРОИТЕЛЬНОЕ ПРОИЗВОДСТВО № 4 (52)'2024

используются те же переменные, что и ранее, единственное — количество дней и количество рабочих поменяли местами.

Последний столбец в таблице 1 показывает полученное требуемое количество рабочих для выполнения каждой из работ в расценке за 6 дней. Также ниже, на рисунке 2, продемонстрирована диаграмма, отображающая сравнение требуемого количества рабочих по заданной продолжительности выполнения работ.

Здесь результат отношения максимального требуемого количества рабочих к минимальному несколько увеличивается — на 0,2.

Для того, чтобы воспринимать разницу между наиболее затратными работами и наименее затратными было проще, вся информация была сведена ниже, значения здесь получаются делением наибольшего значения из диапазона расценок на наименьшее:

- Трудозатраты, чел./ч − 2,29;
- 2. Количество дней 2,00;
- 3. Требуемое количество человек 2,20.

Судя по информации выше, можно обратить внимание, что разница и в трудозатратах, и в людях, и в продолжительности выполнения работ находится на уровне от двух и более раз. Также, если учитывать денежные расценки по каждой работе, то разница может быть ещё более существенной, так как большее количество трудозатрат — большее требуемое количество рабочих или больше количество выделяемых дней на выполнение работы и, соответственно, большие финансовые издержки в виде постоянных выплат рабочим за смену.

Результаты произведённого исследования показывают действительную величину разброса рассчитываемых значений продолжительности производства опалубочных работ, а также требуемого количества рабочих в зависимости от задаваемой продолжительности производства работ.

Полученные величины разброса, равные 2 и 2,2 соответственно, указывают на необходимость более детального исследования данной проблемы для того, чтобы определить методологию, способную обеспечить более высокую, по сравнению с действующей, упомянутую выше

Рис. 2. Диаграмма требуемого количества рабочих для выполнения работы в указанный срок
Fig. 2. Diagram of the required number of workers to complete the work within the specified period

величину разброса расчётных значений продолжительности производства опалубочных работ.

Обсуждение

Выявлено некоторое количество проблем, связанных с неполной достоверностью получаемых расчётных значений согласно расценкам ГЭСН:

- 1. При планировании производства работ, а именно в процессе разработки раздела проекта организации строительства, подрядные организации, отвечающие за его разработку, а в частности, за разработку календарного плана строительства, ссылаются на нормативные значения трудозатрат, что может приводить к неправильной трактовке выбранных позиций и неправильному календарно-сетевому планированию (существует риск выбрать норматив с меньшим количеством трудозатрат, чем получится на самом деле).
- 2. При создании и согласовании генподрядных договоров сметная документация представляет собой чётко структурированный план-список выполнения работ, где учитываются все финансовые траты на каждый вид работ. В случае выбора одного норматива есть вероятность и, возможно, «искушение» в целях экономии со стороны заказчика использовать более дешёвую расценку, которая, в случае, опять-таки, неправильной трактовки, может привести к издержкам на строительной площадке и (или) новой, неуместной стадии согласования сметной документации.

Заключение

В результате произведенного исследования была по-

СПИСОК ЛИТЕРАТУРЫ

- 1. Функционально-системный анализ и системотехника организационно-технологического проектирования в строительстве / П. Б. Каган, Е. Н. Куликова, Г. Г. Малыха, В. В. Кулакова, С. Г. Шеина // Наука и бизнес: пути развития − 2018. − № 9 (87). − С. 11−16. − URL: https://elibrary.ru/item.asp?id=36366170.
- 2. Лапидус, А. А. Факторы и источники риска в жилищном строительстве / А. А. Лапидус, О. Д. Чапидзе // Строительное производство 2020 № 3. С. 2–9. URL: https://elibrary.ru/item.asp?id=44513272.
- 3. Cost Optimization of Formwork Using Value Engineering Techniques in Building Projects. / M. L. D. Vansya, S. A. Kuncaravita, M. O. B. Bustamin, Sujatmiko, S. Zuraidah, W. A. Nugroho // Journal of Advanced Industrial Technology and Application. 2024. Vol. 5, Iss. (2). Pp. 70–79. URL: https://penerbit.uthm.edu.my/ojs/index.php/jaita/article/view/18709.
- 4. Kalugin, Yu. B. Reasons of delays in construction projects / Yu. B. Kalugin // Magazine of civil engineering. 2017. Vol. 6, Iss. 74. P.p 61–69. URL: https://elibrary.ru/item.asp?id=30743043.
- 5. Pham, V. H. S. Application of multi-criteria analysis in the selection of formwork material for high-rise building construction projects / V. H. S. Pham, T. D. Dau. DOI 10.1080/23311916.2024.2367121 // Tran Cogent Engineering. 2024. Vol. 11, Iss. 1. Pp. 1–16.
- Durdyev, S. Causes of delays on construction projects: a comprehensive list / S. Durdyev, M. R. Hosseini. – DOI https:// doi.org/10.1108/IJMPB-09-2018-0178 // International Journal of Managing Projects in Business. – 2020. – Vol. 1, Iss. 13. – Pp. 20–46.
- 7. Huszár, Z. Korszerű zsaluzórendszerek jellemzése és

REFERENCES

 Funktsional'no-sistemnyj analiz i sistemotekhnika organizatsionno-tekhnologicheskogo proektirovaniya v ставлена научная задача, которая требует более детального и глубоко изучения подходов к определению величины продолжительности производства работ по установке опалубки перекрытий при помощи действующих нормативов. Научная проблема, выявленная в настоящей работе, может быть сформулирована следующим образом:

- во-первых, определение продолжительности опалубочных работ при устройстве перекрытий может быть вычислено с применением не менее 8 нормативов:
- во-вторых, при постоянном количестве рабочих разброс расчётных значений продолжительности (от минимального до максимального) составляет более 200 %;
- в-третьих, при определении количества рабочих, которое необходимо для выполнения опалубочных работ в заданный (директивный) срок, расхождения между минимальным и максимальным значениями составляют не менее 200 %.

Получеинные результаты подтвердили тот факт, что действующие нормативы в области опалубочных работ не предоставляют достоверную информацию для определения продолжительности производства работ (достоверность — погрешность, например, не более 5 % от расчётного значения). Для решения проблемы применения действующих нормативов авторы предлагают решить эту научную задачу при помощи цифровой модели производства опалубочных работ.

- alkalmazása ipari baleset-elhárítási szempontok vizsgálata során: (angol nyelvű) / Z. Huszár. DOI 10.61790/vt.2024.15245 // Védelem Tudomány a Katasztrófavédelem Online Szakmai, tudományos folyóirata. 2024. Vol. 9, Iss. 1. Pp. 70–81.
- Extension of Time (EoT) Considerations in Construction Duration Estimate for Public Construction Projects / S. N. Ting, V. C. Darrell, A. B. H. Kueh, Y. Y. Lee, C. K. Ng // IOP Conference Series: Materials Science and Engineering. – 2024. – Vol. 13. – URL: https://iopscience.iop.org/article/10.1088/1757-899X/1101/1/012030/pdf.
- 9. On the methodology of conventional and semi-system formwork project comparison / D.V.Muhammad, E.A.Lawdy, N.W. Ming, K. Bagus, R. Taufiq. DOI 10.1016/j.mex.2024.102824 // Methods X. 2024. Vol. 13.
- 10. Михайлова, Е. В. Определение продолжительности возведения зданий и сооружений в условиях неопределенности / Е. В. Михайлова // Строительное производство. 2020. № 1. С. 12–16. URL: https://elibrary.ru/download/elibrary_42852112_19277627.pdf.
- 11. Jipa, A. HiRes: 3D-Printed Formwork for an Integrated Slab / A. Jipa, G. Lydon, A. Yoo, G. Chousou, B. Dillenburger, A. Schlueter. DOI 10.1007/978-3-031-68275-9_34 // Scalable Disruptors. DMS 2024. Springer, Cham. 2024. Pp. 423–433.
- 12. Жалова, И. В. Современные технологии опалубочных систем, применяемые в монолитном строительстве / И. В. Жалова, А. Н. Нагманова // Вестник науки. 2018. № 9 (9). С. 191–194. URL: https://cyberleninka.ru/article/n/sovremennye-tehnologii-opalubochnyh-sistem-primenyaemye-v-monolitnom-stroitelstve/viewer.
- 13. Mele, T. V. Bending-active formwork systems for concrete shells/T.V.Mele,P.Block. DOI 10.1016/j.istruc.2024.106841// Conference: IASS 2024. 2024. Vol. 67. Art. 106841.

stroitel'stve [Functional and system analysis and system engineering of organizational and technological design in construction] / P. B. Kagan, E. N. Kulikova, G. G. Malykha,

V. V. Kulakova, S. G. Sheina // Nauka i biznes: puti razvitiya – 2018 [Science and business: ways of development]. – 2018. – No. 9 (87). – Pp. 11–16. – URL: https://elibrary.ru/item.asp?id=36366170.

- 2. Lapidus, A. A. Faktory i istochniki riska v zhilishhnom stroitel'stve [Factors and sources of risk in housing construction] / A. A. Lapidus, O. D. Chapidze // Stroitel'noe proizvodstvo [Construction production]. 2020. No. 3. Pp. 2–9. URL: https://elibrary.ru/item.asp?id=44513272.
- 3. Cost Optimization of Formwork Using Value Engineering Techniques in Building Projects. / M. L. D. Vansya, S. A. Kuncaravita, M. O. B. Bustamin, Sujatmiko, S. Zuraidah, W. A. Nugroho // Journal of Advanced Industrial Technology and Application. 2024. Vol. 5, Iss. (2). Pp. 70–79. URL: https://penerbit.uthm.edu.my/ojs/index.php/jaita/article/view/18709.
- Kalugin, Yu. B. Reasons of delays in construction projects / Yu. B. Kalugin // Magazine of civil engineering. – 2017. – Vol. 6, Iss. 74. – Pp. 61–69. – URL: https://elibrary.ru/item. asp?id=30743043.
- Pham, V. H. S. Application of multi-criteria analysis in the selection of formwork material for high-rise building construction projects / V. H. S. Pham, T. D. Dau. – DOI 10.1080/23311916.2024.2367121 // Tran Cogent Engineering. – 2024. – Vol. 11, Iss. 1. – Pp. 1–16.
- 6. Durdyev, S. Causes of delays on construction projects: a comprehensive list / S. Durdyev, M. R. Hosseini. DOI https://doi.org/10.1108/IJMPB-09-2018-0178 // International Journal of Managing Projects in Business. 2020. Vol. 1, Iss. 13. Pp. 20–46.
- 7. Huszár, Z. Korszerű zsaluzórendszerek jellemzése és alkalmazása ipari baleset-elhárítási szempontok vizsgálata során: (angol nyelvű) / Z. Huszár. DOI 10.61790/vt.2024.15245 // Védelem Tudomány a Katasztrófavédelem

- СТРОИТЕЛЬНОЕ ПРОИЗВОДСТВО № 4 (52)'2024
- Online Szakmai, tudományos folyóirata. 2024. Vol. 9, lss. 1. Pp. 70 81.
- Extension of Time (EoT) Considerations in Construction Duration Estimate for Public Construction Projects / S. N. Ting, V. C. Darrell, A. B. H. Kueh, Y. Y. Lee, C. K. Ng // IOP Conference Series: Materials Science and Engineering. – 2024. – Vol. 13. – URL: https://iopscience.iop.org/article/10.1088/1757-899X/1101/1/012030/pdf.
- On the methodology of conventional and semi-system formwork project comparison / D. V. Muhammad, E. A. Lawdy, N. W. Ming, K. Bagus, R. Taufiq. – DOI 10.1016/j. mex.2024.102824 // MethodsX. – 2024. – Vol. 13.
- Mikhailova, E. V. Opredelenie prodolzhitel'nosti vozvedeniya zdanij i sooruzhenij v usloviyakh neopredelennosti [Determination of the duration of the construction of buildings and structures in conditions of uncertainty] / E. V. Mikhailova // Stroitel'noe proizvodstvo [Construction production]. – 2020. – No. 1. – Pp. 12–16. – URL: https://elibrary.ru/download/ elibrary 42852112 19277627.pdf.
- 11. Jipa, A. HiRes: 3D-Printed Formwork for an Integrated Slab / A.Jipa, G.Lydon, A. Yoo, G. Chousou, B. Dillenburger, A. Schlueter. DOI 10.1007/978-3-031-68275-9_34 // Scalable Disruptors. DMS 2024. Springer, Cham. 2024. Pp. 423–433.
- 12. Complaint, I. V. Sovremennye tekhnologii opalubochnykh sistem, primenyaemye v monolitnom stroitel'stve [Modern technologies of formwork systems used in monolithic construction] / I. V. Maslova, A. N. Nagmanova // Vestnik nauki [Bulletin of Science]. 2018. No. 9 (9). Pp. 191–194. URL: https://cyberleninka.ru/article/n/sovremennye-tehnologii-opalubochnyh-sistem-primenyaemye-v-monolitnom-stroitelstve/viewer
- 13. Mele, T. V. Bending-active formwork systems for concrete shells / T. V. Mele, P. Block. DOI 10.1016/j.istruc.2024.106841 // Conference: IASS 2024. 2024. Vol. 67. Art. 106841.

DOI: 10.54950/26585340 2024 4 67

УДК 69.05

Обзор отечественного и зарубежного опыта повышения эффективности строительно-монтажных работ при создании подземных сооружений

Review of Domestic and Foreign Experience in Increasing the Efficiency of Construction and Installation Works in the Creation of Underground Structures

Говоруха Пётр Анатольевич

Кандидат технических наук, доцент кафедры «Технологии и организация строительного производства», ФГБОУ ВО «Национальный исследовательский Московский государственный строительный университет» (НИУ МГСУ), Россия, 129337, Москва, Ярославское шоссе, 26, govoruhapa@qic.mqsu.com

Govorukha Petr Anatolyevich

Candidate of Engineering Sciences, Associate Professor of the Department of Technologies and Organization Construction Production, National Research Moscow State University of Civil Engineering (NRU MGSU), Russia, 129337, Moscow, Yaroslavskoe shosse, 26, govoruhapa@qic.mqsu.com

Стяжкина Виктория Олеговна

Магистр кафедры «Технологии и организация строительного производства», ФГБОУ ВО «Национальный исследовательский Московский государственный строительный университет» (НИУ МГСУ), Россия, 129337, Москва, Ярославское шоссе, 26

Styazhkina Victoria Olegovna

Master student of the Department of Technologies and Organization Construction Production, National Research Moscow State University of Civil Engineering (NRU MGSU), Russia, 129337, Moscow, Yaroslavskoe shosse, 26

Аннотация. В статье представлен обзор отечественного и зарубежного опыта повышения эффективности строительных и монтажных работ при создании подземных сооружений. Целью исследования является выявление лучших практик и методов, способствующих увеличению производительности и сокраще-

нию сроков реализации проектов. Предметом исследования являются способы организация производственного процесса при создании подземных сооружений. При выполнении работы использовались научные методы познания в виде анализа, классификации и синтеза для возможности успешного дости-

В ходе работы проведён анализ существующих методов, технологий и подходов, применяемых в строительстве подземных объектов, с акцентом на инновационные решения и автоматизацию процессов. Результаты исследования показывают, что внедрение современных технологий, таких как 3D-моделирование, использование информационного моделирования зданий (ВІМ/ТИМ) и роботизированных систем, значительно повышает эффективность выполнения строительных задач. Кроме того, внимание уделяется вопросам управления проектами и организации труда на строительных площадках

Abstract. The article provides an overview of domestic and foreign experience in improving the efficiency of construction and installation work in the creation of underground structures. The purpose of the study is to identify the best practices and methods that contribute to increasing productivity and reducing project deadlines. The subject of the study is the ways of organizing the production process when creating underground structures. In carrying out the work, scientific methods of cognition were used in the form of analysis, classification and synthesis for the possibility of successfully achieving the research goal.

In the course of the work, an analysis of existing methods, technologies and approaches used in the construction of underground facilities was carried out, with an emphasis on innovative solutions and automation of processes. The results of the study show that the introduction of modern technologies such as 3D

Введение

Значимой проблемой, ставящей под угрозу дальнейшее развитие современных урбанизированных пространств, выступает нехватка площади для новых зданий, будь то жилые комплексы или объекты коммерческой недвижимости. Одним из эффективных методов решения данной задачи становится строительство подземных сооружений. Последние тренды в архитектурных подходах и рост процентного содержания населения в городах сделали подземные конструктивные решения всё более востребованными.

Эти сооружения не только помогают уменьшить влияние вредных факторов внешней среды, но и несут в себе множество плюсов и для обитателей природы, что направлено на создание инклюзивных, устойчивых и безопасных городских экосистем [1]. Возможности, предлагаемые подземной архитектурой, помогают эффективнее использовать пространства, создать менее уязвимую к природным катастрофам эксплуатацию зданий, а также улучшают климатические условия внутри сооружений. В различных странах доступно множество исследований, доказывающих, что подземные проекты — это правильный шаг к эффективной, многофункциональной и комфортной архитектуре будущего.

В современном строительстве подземных сооружений очевидна актуальность объединённых усилий специалистов в области геомеханики и геотехники, особенно в контексте городского развития и проектирования зданий. Это подчёркивает важность сотрудничества этих дисциплин в рамках градостроительных концепций. Совместная работа позволит специалистам не только углубить свои знания, но и извлечь ценные уроки от других экспертов, что приведёт к значительному обогащению и улучшению их практического опыта.

В последнее время строительная отрасль испытывает серьёзные трудности, что требует от нас оптимизации процессов и ускорения завершения проектов, особенно тех, что касаются подземных объектов. Это вызвано уве-

в виде формирования управленческого решения для выбора наиболее рационального способа выполнения строительномонтажных работ при возведении подземных зданий. Выводы исследования могут быть использованы для повышения эффективности процессов в строительстве подземных сооружений как в России, так и за рубежом.

Ключевые слова: подземные сооружения, строительные и монтажные работы, эффективность, технологии, 3D-моделирование, информационное моделирование зданий (ВІМ), автоматизация, управление проектами, инновации, зарубежный опыт

modeling, the use of building information modeling (BIM) and robotic systems significantly increases the efficiency of construction tasks. In addition, attention is paid to the issues of project management and labor organization on construction sites, in the form of the formation of a management decision to choose the most rational way to perform construction and installation work during the construction of underground buildings. The findings of the study can be used to improve the efficiency of processes in the construction of underground structures both in Russia and abroad

Keywords: underground structures, construction and installation works, efficiency, technologies, 3D modeling, building information modeling (BIM), automation, project management, innovations, foreign experience.

личением требований к безопасности, улучшению экологического положения и повышению экономической эффективности. Важно изучать опыт других стран, что способствует улучшению российских строительных компаний, делая их более конкурентоспособными на рынке.

Создание подземных сооружений — это трудоёмкий и многосторонний процесс. Современные строительные технологии, включая качественные строительные материалы, наземные и подземные механизмы, ориентированы на повышение эффективности работ. Опыт зарубежного строительства позволяет значительно повысить скорость, качество и стоимость, а также снизить негативные последствия на природу в процессе строительства и эксплуатации данных объектов.

Материалы и методы

При исследовании использовались методы систематизации и классификации данных, для того чтобы выявить современные тенденции в области подземного строительства, которые позволят застройщикам получать наилучшие результаты деятельности.

Результаты

История и актуальность проблемы повышения эффективности строительно-монтажных работ

История создания подземных сооружений — это эволюция с первобытных форм труда до внедрения механизированных и высоких технологий сегодня. Проектировщики и подрядчики всегда стремились использовать надёжные материалы, на которых и основывается вся деятельность.

Во второй половине XX века в Западной Европе наблюдались значительные изменения в области строительных технологий. Основными новшествами стали внедрение туннельных технологий и микротуннелирования, которые существенно снизили трудозатраты на строительных площадках.

Кроме того, использование современных машин сделало рабочие процессы быстрее и повысило уровень без-

опасности на стройках. В частности, в Японии, где часто происходят землетрясения и существует дефицит земли, активно развивают технологии подземного строительства. Современные автоматизированные и роботизированные технологии сделали строительные работы более

дешёвыми и безопасными [2].

Новые методы и материалы, такие как самоуплотняющийся бетон, способствующие улучшению прочности и текучести конструкций, активно применяются в подземном строительстве и проектировании в таких странах, как Россия, Китай, Канада, где отмечен высокий уровень развития соответствующих технологий. Внедрение современных технологий трёхмерного моделирования и геоинформационных систем (ГИС) значительно снижает риски на всех этапах строительного процесса, что, в свою очередь, позволяет оптимизировать расходы и ускорить реализацию строительных проектов.

Строительство подземных сооружений в современных условиях требует тщательного подхода ввиду ограниченности земельных ресурсов и наличия подземных коммуникаций, таких как транспортные системы и заводы [3]. Это обстоятельство подчёркивает необходимость умелого использования подземного пространства. Также внимание уделяется экологическим аспектам, включая защиту окружающей среды, энергосбережение и долговечность конструкций. Однако усовершенствования технологии и материалов в этом сегменте являются неотъемлемыми. При этом процесс возведения таких построек сталкивается с проблемами, обусловленными недостаточным регулированием нормативами, что затрудняет проектные действия в данной сфере [Cattori S., Zingg S].

Как следствие, наука и практика призваны решать эти актуальные проблемы, что делает крайне важным поиск самых современных подходов, оптимизацию строительных процедур и использование прогрессивных материалов в этой сфере. Всё это в итоге приводит к повышению безопасности и качества возводимых объектов, уменьшению сроков выполнения работ, а также сокращению эксплуатационных расходов [4].

Таким образом, можно утверждать, что на протяжении веков технологии подземного строительства значительно развивались. Современные методы направлены на улучшение безопасности и повышение эффективности работ на данном уровне [1–5].

Отечественный опыт улучшения процессов при создании подземных сооружений

Сейчас в России активно развиваются технологии создания конструкций подземных объектов. Это связано с внедрением современных инженерных методик и оптимизацией проектных мероприятий. Новые подходы к строительству позволяют значительно сократить сроки и затраты на 50 %. Кроме того, следует особое внимание уделить не только безопасности сотрудников, но и высокому стандарту качества готовых проектов.

Современные технологии бурения и строительства играют ключевую роль в инженерии. Среди них выделяется горизонтальное направленное бурение — метод, позволяющий значительно ускорить подготовку почвы для строительства подземных объектов, минимизируя ущерб окружающей природе. Наиболее эффективен он в городских условиях, где важно сохранить имеющиеся здания и объекты общественного назначения.

Чтобы обеспечить единый контроль за всеми этапами строительных и монтажных работ, в российском строи-

СТРОИТЕЛЬНОЕ ПРОИЗВОДСТВО № 4 (52)'2024

тельстве успешно внедряются автоматизированные системы управления строительством (ACYC). Это позволяет существенно снизить затраты на строительные работы и оптимизировать расходы на организацию хранения ресурсов [6].

Современные подземные конструкции требуют применения высококачественных строительных материалов, и геосинтетика является одним из таких решений. Её использование в инженерных сооружениях гарантирует не только высокую прочность и долговечность, но и возможность значительного снижения затрат на строительство и дальнейшее обслуживание, что обеспечивает надёжную работу объектов на продолжительное время.

В России заметно не только развитие технологий, но и модернизация образования в строительной сфере. Многие колледжи и центры повышения квалификации готовят профессионалов, предлагая сертифицированные тренинги и курсы по современным строительным практикам, в том числе в области подземного строительства. Эти усилия обеспечивают подготовку высококлассных кадров, способных реализовывать сложнейшие строительные проекты, соответствующие международным стандартам.

В Российской Федерации осуществляется важная работа по созданию стандартов для проектирования, строительства и эксплуатации подземных сооружений. Она направлена на унификацию технологий в этой сфере, что, в свою очередь, способствует повышению эффективности и снижению трудозатрат, а также улучшению качества конечных пролуктов.

Внедрение современных решений и технологий в проектирование подземного строительства в России значительно улучшает качество инфраструктурных проектов. Обновление норм и стандартов, а также подготовка квалифицированных специалистов позволяют достигать успешного выполнения таких задач.

Зарубежный опыт в области повышения эффективности строительно-монтажных работ

На сегодняшний день на глобальном рынке строительства подземных объектов появились инновационные технологии, которые значительно увеличивают эффективность выполняемых работ и гарантируют безопасность. Ключевыми зарубежными направлениями являются использование высокотехнологичного оборудования, автоматизация и роботизация сложных процессов и внедрение современных методов управления [1]. Ещё одно важное направление развития инновационных технологий за рубежом — уменьшение вклада тоннелестроения в загрязнение окружающей среды и формирование углеродного следа, под которым принято понимать совокупность всех выбросов парниковых газов, произведённых в результате хозяйственной деятельности человека [Schwartzentruber].

Современные технологические решения, такие как тоннелепроходческий механизированный комплекс (ТПМК), внедряемые для строительства подземных сооружений, существенно повышают эффективность процесса благодаря одновременному извлечению грунта и установке облицовки [Jakobsen, 2014]. Примером полезности ТПМК служит тоннель Ла-Фигерас — Перпиньян, связывающий Испанию и Францию, где была отмечена экономия времени, сокращение воздействия на сотрудников и оптимизация строительных работ. ТПМК стал ключевым инструментом в реализации этого проекта. Другим примером успешного использования ТПМК при проходке выработок сложной геометрической формы

является проект регионального транзитного коридора Connector (RCTC) в Лос-Анджелесе. Механизированная проходка позволила возвести камерную выработку подковообразной формы шириной 17 м, высотой 10,4 м и длиной 91,4 м [Choi S. H. (J.), Hansmire W. H., Herranz C.].

Автоматизация даёт возможность использования разных специализированных технологий и современного ПО, среди которых ВІМ-технологии (Building Information Modeling) занимают особое место [Charanton E., Marchese L., Noroozipour N.]. При использовании ВІМ-решений на протяжении проектирования и строительства обеспечивается упрощение работы с данными объектами на каждом этапе, что значительно снижает затраты по времени и финансам. Примером успешного применения ВІМ является проект Crossrail, осуществлённый в Лондоне, где его внедрение позволило улучшить планирование работ и снизить вероятность ошибок в строительных процессах.

Кроме того, применение проектного управления и комплекса рисков в международной практике соответствует высокому уровню техники в области underground construction. Гибкая методология способствует созданию эффективной системы управления проектами и актуализации документации, что, в свою очередь, минимизирует вероятность срыва графиков и превышения сметных объёмов. Положительные результаты подтверждаются неоспоримым фактом успешного строительства длиннейшего железнодорожного туннеля под горами с использованием метода отведения вод и внедрения технологии досрочного создания рёбер буро-набухания по технологии отлива бетона.

В современном мире наблюдается активное применение экологически безопасных технологий. Это особенно заметно в сфере строительства подземных объектов, где такие технологии значительно уменьшают атмосферные выбросы, минимизируют количество отходов и снижают негативное воздействие на источники подземных вод [3]. В то же время крайне важна всесторонняя оценка риска негативных последствий освоения городского подземного пространства [Куликова Е. Ю., Конюхов Д. С.; Hongjun W.].

В разных странах наблюдается разнообразие технологий и методик, применяемых в строительстве подземных объектов. Это создаёт возможности для повышения прочности и устойчивости таких конструкций. В мировой практике много примеров стран, где используют современное оборудование, автоматизируют производственные процессы и делают акцент на охрану экологической безопасности.

Сравнительный анализ подходов к оптимизации строительства подземных сооружений

При обустройстве подземных сооружений важно тщательно подходить к комплексу методов выполнения строительных работ — от монтажа до строительства. Эффективные приёмы, основанные на международном опыте и национальных традициях, помогают оптимизировать трудозатраты и бюджет, предоставляя доступ к многочисленным подходам для успешного решения поставленных задач. Но как выбрать лучший подход [1]?

В России в процессе возведения подземных объектов использование современных технологий и материалов становится всё более актуальным. Это позволяет обеспечить надёжную гидроизоляцию конструкций и их долговечность, минимизируя воздействие грунтовых вод. Кроме того, инновационные решения, такие как механизация

и автоматизация, а также применение беспилотников для контроля за выполнением работ, обеспечивают максимальную эффективность на всех этапах проектирования и строительства. Компьютерное моделирование существенно упрощает процесс, предоставляя точные данные для анализа и оптимизации работ.

Сегодня проектировщики подземных сооружений за пределами нашей страны применяют комплексный подход, охватывающий все фазы — от идеи до реализации. Первая фаза проектирования, основанная на ВІМ (Building Information Modeling), позволяет создать точные 3D-модели, которые точным образом представляют процесс строительства. Это помогает эффективно распределять ресурсы и значительно ускоряет выполнение проектов. Новые технологии, такие как 3D-печать и автоматизация, внедряются компаниями в США, Европе и Японии, сокращая трудозатраты и повышая точность, что ведёт к повышению эффективности строительства [5].

Анализ методов оптимизации в строительстве подземных конструкций в России и за границей показывает общие черты в стремлении внедрять современные технологии и управленческие практики. Однако, в отличие от зарубежного подхода, где осуществляются современные решения на всех этапах (проектирование, строительство и эксплуатация), российская практика акцентирует внимание на адаптации технологий для существующих процессов. Хотя это помогает повысить эффективность, но сужает возможности для полного раскрытия потенциала

Никто не сомневается, что привлечение к проектированию и строительству всех заинтересованных сторон, включая конечных пользователей и представителей местных сообществ, значительно улучшает качество проектных решений. Не стоит забывать также о том, что такие мероприятия позволяют не только сократить время на согласование проекта, но и повысить уровень удовлетворённости конечных пользователей. Понятно, что любой проект по обустройству территории направлен на благо именно этих людей, и их мнение в этом вопросе — аксиома. К тому же, замещение негативных эмоций у целевой аудитории на позитивные создаёт более благоприятные условия для улучшения репутации городских объектов [7].

Интеграция мирового и локального опыта в разработку подземных структур приводит к успехам в использовании передовых технологий и подходов. Совершенствование совместной работы критически важно: это минимизирует затраты и упрощает производственные стадии, что, в свою очередь, улучшает итоговые показатели работ. Это открывает новые перспективы в вертикальном строительстве.

Перспектива освоения подземного пространства в условиях рыночной экономики

Данная область инженерного проектирования по подземным конструкциям находится на этапе активного развития. Эффективная реализация подобных проектов связана с различными факторами, включая параметры рынка услуг. Важно также учитывать правовые аспекты, чтобы найти общий язык между заинтересованными сторонами — портфелем заказчиков и исполнителей.

Исследования подтверждают, что оптимально разработанные сооружения новых подземных переходов — те, что можно оборудовать торговыми точками и сервисными службами. Такие переходы являются примером концепции нулевого этажа в городских зонах, что особенно актуально на фоне острой нехватки пространств в крупных городах. Предложенный подход обещает высокую степень доходности и распространённости.

Согласно исследованиям в области экономики, строительство подземных автостоянок и гаражей прямо в сердце города, что выполняется акционерными обществами, показывает значительную рентабельность. В последние 10—15 лет число автомобилей резко возросло, что показало необходимость создания подземных парковок [2].

Становится ясным, что внедрение современных элементов инфраструктуры в условиях городского пространства позитивно влияет на экономику. Это благоприятствует росту доходов у ритейлеров и сервисных компаний, таких как магазины одежды и агентства недвижимости. Одним из важных следствий этого процесса становится формирование иерархии репрезентативности локаций, что, в свою очередь, влияет на цены.

Цены на земельные участки в крупных российских городах становятся сопоставимыми с ценами в экономически развитых странах. В 2022 году аренда гектара в Подмосковье стоила от 300 до 800 тысяч долларов, тогда как в центре столицы аренда достигала 5—10 миллионов долларов за гектар. Инвестиции в подземное строительство абсолютно целесообразны, поскольку аналогичные проекты в западных странах принесли большую прибыль благодаря использованию подземных ресурсов и повторному использованию глубинных месторождений. Подземное строительство активно развивается в таких мегаполисах, как Москва.

Увеличение автомобилей в некоторых государствах, находящихся за пределами СНГ, наблюдается на фоне медленного увеличения протяжённости автотрасс, что ведёт к затруднениям движения. Например, столица Франции, Париж, при имеющихся 11,5 млн квадратных метров автотрасс имеет 11,2 млн квадратных метров, занятых непосредственно автомобилями. Пробки также наблюдаются в таких крупных мегаполисах, как Нью-Йорк (120 автомобилей на 1 км) и Лондон (63 автомобиля на 1 км) [1].

Разработка проектов, связанных с подземными конструкциями, требует учёта специфики, размеров и ориентации относительно наземных сооружений, а также порядка использования подземного пространства. Эти факторы важны для согласования с генеральным планом, который базируется на унифицированных схемах для таких объектов. Подобный системный подход значительно увеличивает градостроительную эффективность [1].

Подземные стройки оказывают влияние на экономику. С одной стороны, стоимость таких объектов выше, а с другой — снижаются прочие затраты, что улучшает финансовые показатели [1]:

- Из-за активной застройки населённых пунктов сельскохозяйственные угодья уменьшаются в размерах, что приводит к снижению компенсационных выплат владельцам земли и производителям сельскохозяйственной продукции.
- Уменьшается длина жилых районов, объектов коммунальной инфраструктуры и сетей; параллельно идёт обновление услуг с минимизацией захвата земель.
- Объединение бизнес-услуг в единую платформу способствует повышению синергии и укреплению позиций всех игроков на рынке благодаря удобному рас-

СТРОИТЕЛЬНОЕ ПРОИЗВОДСТВО № 4 (52)'2024

- положению объектов торговли в подземных зонах рядом с вокзалами и станциями метро, что гарантирует стабильный доход.
- Подземные объекты обеспечивают весьма заметные плюсы, например, расположение ниже поверхности обеспечивает оптимальные условия: меньше шума, поддержание стабильной температуры, а также защита от механических воздействий. Эти факторы способствуют значительному сокращению затрат на эксплуатацию таких сооружений.
- Создаётся эффективная транспортная система, целью которой является повышение скорости перемещения и минимизация времени, затрачиваемого на поездки пассажиров и грузоперевозки.
- Гарантировано поддержание надлежащего функционирования природной инфраструктуры, наладка почтового сервиса, а также обеспечения надлежащего уровня работ по очищению территории от снегопадов и вывозу мусора.
- Снижение временных затрат на покупки, транспортные услуги и другой сервис стали возможными благодаря этому фактору [8].

Рекомендации для повышения эффективности строительно-монтажных работ в будущем

В условиях стремительных изменений в технологиях и важных преобразований в строительстве, особенно в сфере подземных сооружений, успехи зависят от задействования новаторских и комплексных подходов. Опыт как отечественных, так и зарубежных специалистов позволяет выделить три основных направления активного повышения эффективности: внедрение передовых технологий; усовершенствование стройуправления; детальная проработка проектирования и всех сметных расчётов.

При возведении подземных конструкций необходимо применять новые технологии и материалы. Это включает в себя бесшовные гидроизоляционные технологии и специализированные бетонные смеси, которые отличаются стойкостью к агрессии химических веществ. Автоматизированные системы мониторинга обеспечивают контроль на всех стадиях возведения подземных объектов. Такие меры направлены на повышение прочности и долговечности конструкций, что позволяет значительно уменьшить их разрушение.

Строительство и проектирование необходимо оптимизировать. В этом помогает BIM (Building Information Modeling) — технология, обеспечивающая единую информационную модель для всех участников проекта. Благодаря этому взаимодействие становится более согласованным, что влечёт за собой сокращение сроков выполнения и уменьшение расходов на проектирование и реализацию строительства.

Заключение

В статье рассматриваются мировая практика и опыт России в сфере оптимизации строительства объектов под землёй. В результате анализа выявлено, что внедрение новых технологий — это стратегически эффективный способ увеличения темпов рабочей активности, позволяющий существенно сократить затрату времени.

На сегодняшний день наблюдается рост населения и увеличение количества автомобилей, что приводит к активному строительству подземных объектов в городах. Это связано с нехваткой пространства, заторами, загрязнением и зависимостью от энергии. Новые подземные сооружения появляются в центрах культуры и торговли,

что создаёт дополнительные сложности для горожан и власти

Во всём мире повсеместно внедряется и успешно применяется многогранная концепция подземного строительства, показывающая свою актуальность в градостроительных решениях. Различные сооружения, соответствующие разнообразным потребностям, могут нахолиться в нижних частях этих комплексов.

СПИСОК ЛИТЕРАТУРЫ

- Управление программами строительства подземных объектов: научное издание / В. И. Теличенко, Е. А. Король, П. Б. Каган. Д. С. Конюхов. Москва: Издательство АСВ. 2010. 296 с.
- 2. Лысиков, Б. А. Использование подземного пространства : монография / Б.А.Лысиков, А.А. Каплюхин. Донецк : Норд-Пресс, 2005. 392 с.
- 3. Папернов, М. М. Производственные и складские объекты в горных выработках / М. М. Папернов, А. Ф. Зильберборд. Москва: Стройиздат, 1980. 140 с.
- 4. Покровский, Н. М. Проектирование комплексов выработок подземных сооружений / Н. М. Покровский. Москва : Недра. 1970. 320 с.
- 5. Швецов, П. Ф. Под землю, чтобы сберечь землю / П. Ф. Швецов, А. Ф. Зильберборд. Москва : Наука, 1983. 144 с.
- 6. Шепелев Н. П., Шумилов М. С. Реконструкция городской застройки : учебник для строительных специальностей вузов. Москва : Высшая школа, 2020. 273 с.
- 7. Galiev, I. Determination of the time norms for excavating soil with a mini excavator / I. Galiev, R. Ibragimov // E3S Web of Conferences. Серия «Ural Environmental Science Forum «Sustainable Development of Industrial Region», UESF 2021», Chelyabinsk, 17–19 февраля 2021 года. Челябинск, 2021. Т. 258, № 9044.
- 8. Lapidus, A. Organizational and technological solutions justifying use of non-destructive methods of control when building monolithic constructions of civil buildings and structures / A. Lapidus, A. Khubaev, T. Bidov // MATEC Web of Conferences / 6th International Scientific Conference on Integration, Partnership and Innovation in Construction Science And Education, IPICSE 2018, Moscow, 14–16 ноября 2018 года. Москва, 2018. Т. 251, № 05014.
- 9. Куликова, Е. Ю. Мониторинг риска аварий при освоении подземного пространства / Е. Ю. Куликова, Д. С. Конюхов. DOI 10.25018/0236_1493_2022_1_0_97 // Горный информационно-аналитический бюллетень. 2022. № 1. С. 97–103.
- 10. Cattori, S. The Glacier Garden in Lucerne gets a new main underground attraction / S. Cattori, S. Zingg // Expanding Underground Knowledge and Passion to Make a Positive Impact on the World / 1st EditionProceedings of the ITA-AITES World Tunnel Congress 2023 (WTC 2023), 12-18 May 2023,

По всей стране, особенно в больших городах России, продолжается активное строительство подземных сооружений. Быстро развиваются и активно внедряются в жизнь проекты по строительству подземных объектов различного назначения, включая транспортные и инфраструктурные тоннели, и реализуются проекты по совершенствованию подземной инфраструктуры: паркинги и гаражи, заводы и склады, вдобавок к этому расширяются сети метрополитена.

- Athens, Greece; G. Anagnostou, A. Benardos V. P. Marinos. London: CRC Press, 2023. Pp. 503–510.
- 11. Charanton, E. Study of a large opening in a retaining wall by a TBM: Consequences on the ground and the structures, structural reinforcement solutions and impacts on neighboring constructions / E. Charanton, L. Marchese, N. Noroozipour // Expanding Underground Knowledge and Passion to Make a Positive Impact on the World / 1st Edition Proceedings of the ITA-AITES World Tunnel Congress 2023 (WTC 2023), 12-18 May 2023, Athens, Greece; G. Anagnostou, A. Benardos V. P. Marinos. London: CRC Press, 2023. Pp. 511–518.
- 12. Choi, S. H. (J.) Significance of initial lining on dynamic performance of final lining for large size cavern / S. H. (J.) Choi, W. H. Hansmire, C. Herranz // Expanding Underground Knowledge and Passion to Make a Positive Impact on the World / 1st Edition Proceedings of the ITA-AITES World Tunnel Congress 2023 (WTC 2023), 12-18 May 2023, Athens, Greece; G. Anagnostou, A. Benardos V. P. Marinos. London: CRC Press, 2023. Pp. 519–527.
- 13. Hongjun, W. Earth human settlement ecosystem and underground space research. 15th World Conference of Associated Research / W. Hongjun // Procedia Engineering / 15th International Scientific Conference "Underground Urbanisation as a Prerequisite for Sustainable Development", ACUUS 2016, St. Petersbug, 12–15 сентября 2016 года. Saint Peterburg, 2016. Vol. 165. Pp. 765–781.
- 14. Jakobsen, P. D. Estimation of soft ground tool life in TBM tunneling: PhD dissertation / Pål Drevland Jakobsen Norwegian University of Science and Technology. Trondheim, 2014.
- 15. Schwartzentruber L. D'Aloia. What might be our vision of the ecological transition in tunnels and underground spaces for the years to come? / L. D'Aloia Schwartzentruber // Expanding Underground Knowledge and Passion to Make a Positive Impact on the World / 1st Edition Proceedings of the ITA-AITES World Tunnel Congress 2023 (WTC 2023), 12-18 May 2023, Athens, Greece; G. Anagnostou, A. Benardos V. P. Marinos. London: CRC Press, 2023. Pp. 32–39.

REFERENCES

- Upravlenie programmami stroitel'stva podzemnykh ob"ektov : nauchnoe izdanie [Management of programs for the construction of underground facilities : a scientific publication] / V. I. Telichenko, E. A. Korol, P. B. Kagan, D. S. Konyukhov. Moscow : Publishing House of the ACU, 2010. – 296 p.
- 2. Lysikov, B. A. Ispol'zovanie podzemnogo prostranstva: monografiya [The use of underground space: a monograph] / B. A. Lysikov, A. A. Kaplyukhin. Donetsk: Nord-Press, 2005. 392 p.
- 3. Papernov, M. M. Proizvodstvennye i skladskie ob'ekty v gornykh vyrabotkakh [Production and storage facilities in mining operations] / M. M. Papernov, A. F. Zilberbord. Moscow: Stroyizdat, 1980. 140 p.
- 4. Pokrovsky, N. M. Proektirovanie kompleksov vyrabotok podzemnykh sooruzhenij [Designing complexes of workings

- of underground structures] / N. M. Pokrovsky. Moscow : Nedra Publ., 1970. 320 p.
- 5. Shvetsov, P.F. Pod zemlyu, chtoby sberech 'zemlyu [Underground to save the earth] / P. F. Shvetsov, A. F. Zilberbord. Moscow: Nauka, 1983. 144 p.
- Shepelev, N. P. Rekonstruktsiya gorodskoj zastrojki: uchebnik dlya stroitel'nykh spetsial'nostej vuzov [Urban reconstruction: a textbook for university construction specialties] / N. P. Shepelev, M. S. Shumilov. – Moscow: Higher School, 2020. – 273 p.
- 7. Galiev, I. Determination of the time norms for excavating soil with a mini excavator / I. Galiev, R. Ibragimov // E3S Web of Conferences. Серия «Ural Environmental Science Forum «Sustainable Development of Industrial Region», UESF 2021», Chelyabinsk, February 17-19, 2021. Chelyabinsk, 2021. Vol. 258. No. 9044.
- 8. Lapidus, A. Organizational and technological solutions

justifying use of non-destructive methods of control when building monolithic constructions of civil buildings and structures / A. Lapidus, A. Khubaev, T. Bidov // MATEC Web of Conferences / 6th International Scientific Conference on Integration, Partnership and Innovation in Construction Science And Education, IPICSE 2018, Moscow, November 14-16, 2018. – Moscow, 2018. – Vol. 251. – No. 05014.

- Kulikova, E. Y. Monitoring riska avarij pri osvoenii podzemnogo prostranstva [Monitoring the risk of accidents during the development of underground space] / E. Y. Kulikova, D. S. Konyukhov. – DOI 10.25018/0236_1493_2022_1_0_97 // Gornyj informatsionno-analiticheskij byulleten' [Mining information and analytical bulletin]. – 2022. – No. 1. – Pp. 97–103.
- 10. Cattori, S. The Glacier Garden in Lucerne gets a new main underground attraction / S. Cattori, S. Zingg // Expanding Underground Knowledge and Passion to Make a Positive Impact on the World / 1st EditionProceedings of the ITA-AITES World Tunnel Congress 2023 (WTC 2023), 12-18 May 2023, Athens, Greece; G. Anagnostou, A. Benardos V. P. Marinos. London: CRC Press, 2023. Pp. 503–510.
- 11. Charanton, E. Study of a large opening in a retaining wall by a TBM: Consequences on the ground and the structures, structural reinforcement solutions and impacts on neighboring constructions / E. Charanton, L. Marchese, N. Noroozipour // Expanding Underground Knowledge and Passion to Make a Positive Impact on the World / 1st Edition Proceedings of the ITA-AITES World Tunnel Congress 2023 (WTC 2023), 12-18 May 2023, Athens, Greece; G. Anagnostou, A. Benardos

СТРОИТЕЛЬНОЕ ПРОИЗВОДСТВО № 4 (52)'2024

- V. P. Marinos. London: CRC Press, 2023. Pp. 511-518.
- 12. Choi, S. H. (J.) Significance of initial lining on dynamic performance of final lining for large size cavern / S. H. (J.) Choi, W. H. Hansmire, C. Herranz // Expanding Underground Knowledge and Passion to Make a Positive Impact on the World / 1st Edition Proceedings of the ITA-AITES World Tunnel Congress 2023 (WTC 2023), 12-18 May 2023, Athens, Greece; G. Anagnostou, A. Benardos V. P. Marinos. London: CRC Press, 2023. Pp. 519–527.
- 13. Hongjun, W. Earth human settlement ecosystem and underground space research. 15th World Conference of Associated Research / W. Hongjun // Procedia Engineering / 15th International Scientific Conference "Underground Urbanisation as a Prerequisite for Sustainable Development", ACUUS 2016, St. Petersbug, 12–15 сентября 2016 года. Saint Peterburg, 2016. Vol. 165. Pp. 765–781.
- 14. Jakobsen, P. D. Estimation of soft ground tool life in TBM tunneling: PhD dissertation / Pål Drevland Jakobsen Norwegian University of Science and Technology. – Trondheim, 2014.
- 15. Schwartzentruber L. D'Aloia. What might be our vision of the ecological transition in tunnels and underground spaces for the years to come? / L. D'Aloia Schwartzentruber // Expanding Underground Knowledge and Passion to Make a Positive Impact on the World / 1st Edition Proceedings of the ITA-AITES World Tunnel Congress 2023 (WTC 2023), 12-18 May 2023, Athens, Greece; G. Anagnostou, A. Benardos V. P. Marinos. London: CRC Press, 2023. Pp. 32-39.

УДК 69.05

DOI: 10.54950/26585340_2024_4_73

Искусственные нейросети в оценке комплексного показателя качества организационно-технологических решений при строительстве на Крайнем Севере

Artificial Neural Networks in Assessment of Complex Quality Indicator of Organizational and Technological Solutions in Construction in the Far North

Лапидус Азарий Абрамович

Доктор технических наук, профессор, заведующий кафедрой «Технологии и организация строительного производства», ФГБОУ ВО «Национальный исследовательский Московский государственный строительный университет» (НИУ МГСУ), Россия, 129337, Москва, Ярославское шоссе, 26, lapidus58@mail.ru

Lapidus Azariy Abramovich

Doctor of Technical Sciences, Professor, Head of the Department of Technologies and Organization of Construction Production, National Research Moscow State University of Civil Engineering (NRU MGSU), Russia, 129337, Moscow, Yaroslavskoe shosse, 26, lapidus58@mail.ru

Абиленцев Станислав Юрьевич

Аспирант кафедры «Технологии и организация строительного производства», ФГБОУ ВО «Национальный исследовательский Московский государственный строительный университет» (НИУ МГСУ), Россия, 129337, Москва, Ярославское шоссе, 26, abilentsev@gmail.com

Abilentsev Stanislav Yurievich

Graduate student of the Department of Technologies and Organization of Construction Production, National Research Moscow State University of Civil Engineering (NRU MGSU), Russia, 129337, Moscow, Yaroslavskoe shosse, 26, abilentsev@qmail.com

Аннотация

Введение

Целью проводимого научного исследования является проверка обоснованности гипотезы о возможности повышения вероятности достижения плановых показателей строительных проектов, реализуемых на Крайнем Севере. Инструментом решения задачи приведения проектов к требуемым характеристикам предлагается оптимизация принимаемых решений за счёт внедрения в процесс управления комплексного показателя, определяющего качество организационно-технологических

решений.

В рамках проводимого исследования выполнен экспертный опрос, в ходе которого определено более пятидесяти параметров, сгруппированных в факторы, а также проведено ранжирование обозначенных факторов и параметров. Для обеспечения удобства дальнейшей работы с факторами и параметрами, возможности определения степени влияния на общий комплексный показатель качества организационно-технологических решений каждого из них, как по-отдельности, так и в совокупности, решено применить искусственные нейронные сети.

Материалы и методы

Описаны общая структура искусственных нейронных сетей и возможность их применения для решения задач исследования. Предложен подход к реализации слоёв нейронов: первым слоем выступают параметры, группируемые в факторы, вторыми слоем – факторы, группируемые в комплексный показатель качества организационно-технологических решений. Приведено подробное описание параметрической модели, взаимосвязи параметров в рамках каждого фактора и факторов между

Результаты

Реализован в программной среде предложенный алгоритм расчёта комплексного показателя качества организационнотехнологических решений, принимаемых при строительстве на Крайнем Севере. Проведено обучение построенной искусственной нейронной сети, уточнены веса параметров и факто-

Abstract

Introduction

The purpose of this research is to verify the validity of the hypothesis about the possibility of increasing the probability of quaranteed achievement of planned indicators of construction projects implemented in the Far North. The tool for solving the problem of bringing projects to the required characteristics is proposed to increase the optimality of decisions by introducing in the management process a complex indicator that determines the quality of organizational and technological solutions.

Within the framework of the ongoing research, an expert survey has been conducted to date, in the course of which more than fifty parameters grouped into factors have been identified, and the ranking of the identified factors and parameters has been carried

To ensure the convenience of further work with factors and parameters, to provide the possibility of determining the degree of influence of each of them on the overall comprehensive indicator of the quality of organizational and technological solutions, both separately and collectively, it was decided to apply artificial neural networks.

Materials and Methods

The general structure of artificial neural networks and the possibility of their application for solving research problems are described. The approach to the implementation of layers of neu-

Ввеление

Целью проводимого научного исследования является проверка обоснованности гипотезы о возможности повышения вероятности достижения плановых показателей строительных проектов, реализуемых на Крайнем Севере. Инструментом решения задачи приведения проектов к требуемым характеристикам предлагается оптимизация принимаемых решений за счёт внедрения в процесс управления комплексного показателя, позволяющего получить оценку организационно-технологических решений (ОТР) и рекомендации о точках, требующих внимания [1].

К настоящему моменту определено более пятидесяти параметров, сгруппированных в факторы, а также проведено ранжирование обозначенных факторов и параметров. Данные результаты получены посредством проведения опроса экспертов как о перечне факторов и параметров, так и о степени их влияния на общее значение показателя ОТР. Для обеспечения удобства дальнейшей работы с факторами и параметрами, определения степени влияния на общий комплексный показатель качества (КПК) организационно-технологических решений каждого из них, как по-отдельности, так и в совокупно-

ров, полученные в рамках ранжирования в ходе экспертного опроса. Установлены пороги функций активации нейронов (в рамках исследования - факторов).

Подготовлена платформа для проведения дальнейшего исследования, а именно: продолжение обучения искусственной нейросети на базе завершённых проектов с известными показателями, определение шкалы желательности и формирование алгоритма повышения значения комплексного показателя качества организационно-технологических решений до жела-

Ключевые слова: комплексный показатель качества организационно-технологических решений, строительство, факторы, Крайний Север, искусственная нейронная сеть, параметри-

rons is proposed: the first layer are parameters grouped into factors, the second layer are factors grouped into a complex indicator of the quality of organizational and technological solutions. A detailed description of the parametric model, the relationship of parameters within each factor and factors among themselves is given.

Results

The proposed algorithm for calculating a complex indicator of the quality of organizational and technological decisions made during construction in the Far North has been implemented in the software environment. The artificial neural network was trained, the weights of parameters and factors obtained in the framework of ranking in the expert survey were specified. Thresholds of neuron activation functions (in the framework of the study - factors) were established.

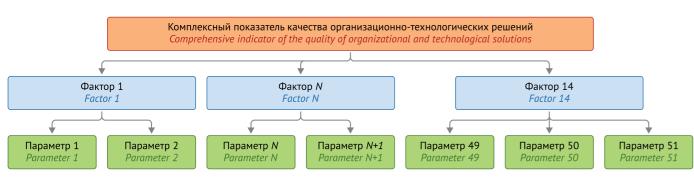
Conclusions

A platform for further research has been prepared, namely: to continue training of the artificial neural network on the basis of completed projects with known indicators, to determine the desirability scale and to form an algorithm for increasing the value of the complex indicator of the quality of organizational and technological solutions to the desired level.

Keywords: complex quality indicator of organizational and technological decisions, construction, factors, Far North, artificial neural network, parametric model.

сти, решено применить искусственные нейронные сети (ИНС).

В ходе текущей работы описаны общая структура искусственных нейронных сетей и возможность их применения для решения задач исследования [2]. Предложен подход к реализации слоёв нейронов: первым слоем выступают параметры, группируемые в факторы, вторыми слоем – факторы, группируемые в комплексный показатель качества организационно-технологических решений. Приведено подробное описание параметрической модели, взаимосвязи параметров в рамках каждого фактора и факторов между собой [3; 4].


Кроме того, в программной среде реализован предложенный алгоритм расчёта комплексного показателя качества организационно-технологических решений, принимаемых при строительстве на Крайнем Севере. Проведено обучение построенной искусственной нейронной сети, уточнены веса параметров и факторов, полученные в рамках ранжирования в ходе экспертного опроса [5]. Установлены пороги функций активации нейронов (в рамках исследования – факторов).

Подготовлена платформа для проведения дальнейшего исследования, а именно: продолжения обучений искусственной нейросети на базе завершённых проектов

СТРОИТЕЛЬНОЕ ПРОИЗВОДСТВО № 4 (52)'2024

							КПК ОТР	0,65	
Фактор	Параметр	Входной сигнал	<i>Wj –</i> вес нейрона	Σ	<i>Wi –</i> вес фактора	Σ	f(x) – функция активации	Выходной сигнал	
xi1	xj1	Нет	0,40	0,60	0,24	0,14	0,14	0,14	
XII	xj2	Да	0,60	0,60	0,24	0,14	0,14	0,14	
xi2	хј3	Да	0,60	0,60	0,22	0,13	0,13	0,13	
XIZ	xj4	Нет	0,40	0,00	0,22	0,13	0,13	0,13	
xi3	xj5	Да	0,60	0,60	0,02	0,01	0,01	0,01	
ΧIS	xj6	Нет	0,40	0,00	0,02	0,01	0,01	0,01	
	хј7	Да	0,30						
xi4	xj8	Да	0,40	0,70	0,07	0,05	0,05	0,05	
	xj9	Нет	0,30						
xi5	xj10	Да	0,50	1,00	0,07	0,07	0,07	0,07	
ΧIJ	xj11	Да	0,50	1,00	0,07	0,07	0,07	0,07	
	xj12	Да	0,25						
	xj13	Нет	0,20						
хіб	xj14	Да	0,25	0,65	0,07	0,05	0,05	0,05	
	xj15	Да	0,15						
	xj16	Нет	0,15						
	xj17	Да	0,40						
xi7	xj18	Да	0,30	0,70	0,07	0,05	0,05 0,05	0,05	0,05
	xj19	Нет	0,30						
	xj20	Да	0,20						
	xj21	Нет	0,10	_					
	xj22	Да	0,20	0.40			0,03	0,03	
xi8	xj23	Нет	0,20	0,40	0,06	0,03			
	xj24	Нет	0,15						
	<i>хj25</i> Нет 0,15								
	хј26	Да	0,30						
xi9	xj27	Да	0,40	0,70	0,05	0,04	0,04	0,04	
	xj28	Нет	0,30						
	xj29	Да	0,25						
	xj30	Да	0,25						
xi10	xj31	Нет	0,10	0,70	0,04	0,03	0,03	0,03	
	xj32	Нет	0,20	· .			3,03	2,03	
	xj33	Да	0,20						
	xj34	Да	0,20						
	xj35	Да	0,20	-					
	xj36	Да	0,20					0,03	
xi11	xj37	Нет	0,10	0,80	0,03	0,03	0,03		
	xj38	Да	0,20	-					
	xj39	Нет	0,10						
	xj40	Да	0,60						
xi12	xj41	Нет	0,40	0,60	0,03	0,02	0,02	0,02	
	xj42	Да	0,20						
	xj43	Да	0,15						
	xj44	Нет	0,15						
xi13	xj45	Да	0,20	0,55	0,02	0,01	0,01	0,01	
	xj46	Нет	0,15	-					
	xj47	Нет	0,15	-					
	xj48	Да	0,30						
			0,30						
	xi49	114		0,70	0.01	0,01 0.01	0,01	0,01	
xi14	xj49 xj50	Да Нет	0,30	0,70	0,01	0,01	0,01	0,01	

Табл. 1. Параметрическая модель на примере двух факторов **Tab. 1.** Parametric model using two factors as an example

Рис. 1. Структурная схема созданной модели **Fig. 1.** Block diagram of the created model

с известными показателями, определения шкалы желательности и формирования алгоритма повышения значения комплексного показателя качества организационнотехнологических решений до желаемого уровня [6].

Материалы и методы

Для получения числового значения комплексного показателя качества организационно-технологических решений разработаны алгоритм и модель, принцип работы которой основан на искусственных нейронных сетях (таблица 1) [7].

Структура взаимосвязей параметров и факторов в созданной модели, аналогичная структуре искусственной нейронной сети (рисунок 1), представляет собой ряд из 14 факторов и 51 параметра, взаимосвязанных между собой [8].

В созданной модели каждый отдельный фактор представляет собой искусственный нейрон (рисунок 2) со свойственными ему характеристиками. Входными сигналами выступают в данном случае параметры, у каждого из которых есть собственный, свойственный только ему, вес. В зависимости от критичности того или иного фактора (или их совокупности) устанавливается порог функции активации [9; 10], и далее происходит сравнение значения сумматора с данным порогом и активация.

Сформирована методика расчёта комплексного показателя качества организационно-технологических решений, где:

Слой 1. Входной сигнал (параметр) x_i ;

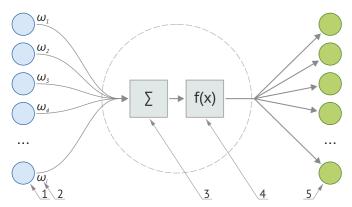


Рис. 2. Схема искусственного нейрона:

1) нейроны, выходные сигналы которых поступают на вход данному; 2) веса входных сигналов; 3) сумматор входных сигналов; 4) вычислитель функции активации; 5) нейроны, на входы которых подаётся выходной сигнал данного

Fig. 2. Schematic diagram of an artificial neuron:

1) neurons whose output signals are input to a given one;
2) weights of input signals; 3) an adder of input signals;
4) calculator of the activation function; 5) neurons whose inputs receive the output signal of the given neuron

Слой 2. Сумматор $x = \sum \omega_j x_j$, ω_j — вес параметра, определяемый по результату экспертной оценки и корректируемый в дальнейшем в процессе обучения;

Слой 3. Входной сигнал (фактор) x_i ;

Слой 4. Сумматор $x = \sum \omega_i x_i$, ω_i — вес фактора, определяемый по результату экспертной оценки и корректируемый в дальнейшем в процессе обучения;

Слой 5. Функция активации:

$$f(x_i) = \begin{cases} 1, ecnu \ x \ge k \\ 0, ecnu \ x < k \end{cases}$$

k — порог, определяемый по результату экспертной оценки [11] и корректируемый в дальнейшем в процессе обучения [12].

На следующем этапе проведено обучение искусственной нейронной сети методом обучения с учителем (рисунок 3). В рамках данного метода оператор (учитель) вводит первоначальные данные (синаптические веса и уровень пороговых значений функций активации факторов) [13; 14], полученные в ходе работы с экспертами, затем, обладая данными с фактически реализованных объектов строительства, проводит последовательный ввод значений параметров для каждого из объектов, вычисляя показатель качества ОТР и корректируя значения весов и порогов функций активации [15; 16]. Таким образом, обучение состоит из следующих этапов:

- 1. Учителем вводятся данные (значения параметров) в разработанную модель.
- 2. Происходит расчёт КПК в соответствии с установленными весами и порогами.
- 3. В том случае, если выходные данные отдельного фактора или КПК в целом не соответствуют требуемым значениям, происходит корректировка весов параметров или факторов (в зависимости от источника ошибки).
- 4. Происходит перерасчёт комплексного показателя качества [17; 18].

Повторения происходят до устранения расхождения фактического отклика системы с желаемым (приведение сигнала ошибки к 0).

Рис. 3. Метод обучения с учителем **Fig. 3.** Learning method with teacher

При более детальном рассмотрении сформированной модели стоит отметить, что для удобства работы с данными и повышения наглядности результата в рамках каждого фактора веса параметров установлены таким образом, что в случае положительного входного сигнала (текущее состояние процесса управления соответствует запросу параметра) по каждому из параметров сумматор фактора принимает значение равное 1, в случае же отрицательных значений входных сигналов (текущее состояние процесса управления не соответствует запросу параметра) по всем параметрам фактор принимает значение О. В свою очередь, веса факторов также устанавливаются в диапазоне от 0 до 1, и в случае активации всех факторов в их максимальных значениях (все параметры факторов активны) это приводит к значению общего выходного сигнала равному 1, а в случае деактивации всех факторов выходной сигнал принимает значение 0.

Кроме того, необходимо обратить внимание на значения порога функции активации факторов. Для каждого фактора он установлен индивидуально по результатам экспертного опроса и уточнён в процессе обучения ИНС. Пороговое значение функции активации определяется суммой весов критически важных параметров, в случае деактивации которых фактор в целом не активируется даже при наличии ненулевых значений по части входных сигналов.

Результаты

В результате проведённой работы описаны базовые принципы (теоретические и практические основы построения искусственных нейронных сетей, процесса их обучения), на основе которых произведена разработка алгоритма расчёта комплексного показателя качества организационно-технологических решений, принимаемых в ходе реализации строительных проектов на Крайнем Севере [19]. Обозначенный алгоритм, принцип действия которого основан на искусственных нейронных сетях, реализован в программной среде.

СПИСОК ЛИТЕРАТУРЫ

- Лапидус, А. А. Влияние комплексного показателя качества организационно-технологических решений на результаты строительства на Крайнем Севере / А. А. Лапидус, С. Ю. Абиленцев. – DOI 10.54950/26585340202343 // Строительное производство. – 2023. – № 4. – С. 3 – 7.
- Лапидус, А. А. Искусственные нейронные сети как математический аппарат для расчёта комплексного показателя качества организационно-технологических решений при возведении конструктивных элементов многоэтажных железобетонных зданий / А. А. Лапидус, В. А. Муря // Наука и бизнес: пути развития. 2019. № 7 (97). С. 28–34.
- Макаров, А. Н. Искусственная нейронная сеть для организации и управления строительным процессом / А. Н. Макаров // Вестник БГТУ им. В. Г. Шухова. – 2017. – № 4. – С. 117–122.
- Нейросетевые технологии в задачах оптимизации, прогнозирования и управления: научное издание / Н. П. Абовский, А. П. Деруга, О. М. Максимова [и др.]; Министерство образования Российской Федерации, Красноярская государственная архитектурно-строительная академия. – Красноярск: КрасГАСА, 2003. – 176 с.
- Tushavin, V. A. Complex Quality Indicators and Ranking in Uncertainty Conditions / V. A. Tushavin // Components of Scientific and Technological Progress. – 2020. – No. 5 (47). – Pp. 15–18.
- 6. Оптимизационные модели инструмент системного мо-

СТРОИТЕЛЬНОЕ ПРОИЗВОДСТВО № 4 (52)'2024

Используя результаты ранее проведённых исследований (перечень факторов и параметров, сформированный в результате экспертного опроса, а также их ранжирование, позволяющее определить первоначальные веса параметров и факторов) и реализованный в программной среде алгоритм, проведено обучение созданной искусственной нейронной сети, а именно: уточнение весов параметров и факторов, а также порогов функций активации последних. Для данного обучения проведён анализ реализованных проектов строительства на Крайнем Севере, сопоставлены отклонения фактически затраченных временных ресурсов от заявленных в рамках подготовки к строительству. Приведено описание каждого нейрона (фактора и формирующих его параметров) с описанием значений весов, порогов, а также условий для его активации.

Обсуждение

К настоящему моменту выполнены все этапы работ (сформировано понимание о необходимых исходных данных, построена и обучена ИНС, алгоритм реализован в программной среде), позволяющие при вводе исходных данных о проекте в разработанную модель производить автоматический расчёт комплексного показателя качества организационно-технологических решений для проектов строительства на Крайнем Севере.

Заключение

В ходе дальнейшего исследования будет проведена оценка завершённых проектов по разработанной модели и сформирована шкала желательности, что даст возможность интерпретировать полученные значения комплексного показателя качества организационно-технологических решений, принимать решение о наличии или отсутствии необходимости внесения корректирующих воздействий на процесс управления строительством на Крайнем Севере, что, в свою очередь, позволит использовать разработанную модель для оценки действующих проектов и получения рекомендаций о необходимости оптимизации процессов.

- делирования / С. А. Баркалов, П. Н. Курочка, Л. Д. Маилян, Е. А. Серебрякова. – Москва : Кредо, 2023. – 522 с.
- 7. Сборщиков, С. Б. Многофакторная параметрическая модель эффективности организационных решений по обеспечению качества строительства / С. Б. Сборщиков, Е. Е. Бахус // Промышленное и гражданское строительство. 2018. № 12. С. 60–67.
- Пименов, С. И. Уровни декомпозиции строительных цифровых информационных моделей (4D-моделей) для задач организационно-технологического моделирования строительного производства / С.И. Пименов. DOI 10.32683/0536-1052-2023-770-2-65-78 // Известия высших учебных заведений. Строительство. 2023. № 2 (770). С. 65–78.
- Удилов, Н. С. Нейронные сети: исторический обзор развития, формирования и особенности нейронных сетей в сравнении с биологическими сетями / Н. С. Удилов. – DOI 10.18411/ trnio-02-2024-620 // Тенденции развития науки и образования. – 2024. – № 106-11. – С. 119–125.
- 10. Лисьих, А. С. Нейронные сети. Применение нейронных сетей в автоматизации процессов / А. С. Лисьих, А. А. Турчина, С. А. Шадрин // Исследования молодых учёных : Материалы LIII Международной научной конференции, Казань, 20–23 января 2023 года. Казань : Молодой учёный, 2023. С. 1–6.
- 11. Бешелев, С. Д. Экспертные оценки / С. Д. Бешелев, Ф. Г. Гурвич. Москва : Наука, 1973. 157 с. (Проблемы науки и технического прогресса).

- 12. Жмуровский, К. В. Нейронные сети и как они работают: основные виды и этапы разработки нейронных сетей / К. В. Жмуровский // Современные тенденции и инновации в науке и производстве: Материалы XII Международной научно-практической конференции, Междуреченск, 26 апреля 2023 года / Редколлегия: Т. Н. Гвоздкова (отв. редактор), С. О. Марков [и др.]. Междуреченск: Кузбасский государственный технический университет имени Т. Ф. Горбачёва, 2023. С. 417.1–417.3.
- 13. Shakkouf, A. Review on Optimization Techniques of Binary Neural Networks / A. Shakkouf. DOI 10.17586/0021-3454-2023-66-11-926-935 // Journal of Instrument Engineering. 2023. Vol. 66, No. 11. Pp. 926–935.
- 14. Феофилов, Д. С. Сравнительный анализ методов обучения искусственных нейронных сетей / Д. С. Феофилов // Техника XXI века глазами молодых учёных и специалистов. 2022. № 20. С. 382 385.
- 15. Савенков, К. Е. Методы дифференцирования для обучения искусственных нейронных сетей / К. Е. Савенков // Информационные технологии в науке и образовании. Проблемы и перспективы : Сборник научных статей Всероссийской межвузовской научно-практической конференции, Пенза, 14 марта 2018 года / Под редакцией Л. Р. Фионовой. –

REFERENCES

- Lapidus, A. A. Vliyanie kompleksnogo pokazatelya kachestva organizacionno-tekhnologicheskikh reshenij na rezul'taty stroitel'stva na Krajnem Severe [The Influence of the Integrated Quality Indicator of Organizational and Technological Solutions on the Results of Construction in the Far North] / A. A. Lapidus, S. Y. Abilentsev // Stroitel'noe proizvodstvo [Construction Production]. – 2023. – No. 4. – Pp. 3 – 7.
- Lapidus,A.A. Iskusstvennye nejronnye seti kak matematicheskij apparat dlya raschyota kompleksnogo pokazatelya kachestva organizatsionno-tekhnologicheskikh reshenij pri vozvedenii konstruktivnykh elementov mnogoetazhnykh zhelezobetonnykh zdanij [Artificial neural networks as a mathematical apparatus for calculating a complex indicator of the quality of organizational and technological solutions in the construction of structural elements of multi-story reinforced concrete buildings] / A. A. Lapidus, V. A. Murya // Nauka i biznes: puti razvitiya [Science and business: ways of development]. 2019. No. 7 (97). Pp. 28–34.
- 3. Makarov, A. N. Iskusstvennaya nejronnaya set' dlya organizatsii i upravleniya stroitel'nym protsessom [Artificial neural network for organizing and managing the construction process] / A. N. Makarov // Vestnik BSTU im. V. G. Shukhova [Bulletin of the BSTU named after V. G. Shukhov]. 2017. No. 4. Pp. 117–122.
- 4. Nejrosetevye tekhnologii v zadachakh optimizatsii, prognozirovaniya i upravleniya : nauchnoe izdanie [Neural network technologies in optimization, forecasting and control problems : scientific publication] / N. P. Abovsky, A. P. Deruga, O. M. Maksimova [etc.]; Ministerstvo obrazovaniya Rossijskoj Federatsii, Krasnoyarskaya gosudarstvennaya arkhitekturnostroitel'naya akademiya [Ministry of Education of the Russian Federation, Krasnoyarsk State Academy of Architecture and Civil Engineering]. Krasnoyarsk : KrasGASA, 2003. 176 p.
- Tushavin, V. A. Complex Quality Indicators and Ranking in Uncertainty Conditions / V. A. Tushavin // Components of Scientific and Technological Progress. – 2020. – No. 5 (47). – Pp. 15–18.
- 6. Optimizatsionnye modeli instrument sistemnogo modelirovaniya [Optimization models a tool for system modeling] / S. A. Barkalov, P. N. Kurochka, L. D. Mailyan, E. A. Serebryakova. Moscow: Kredo, 2023. 522 p.
- 7. Sborshchikov, S.B. Mnogofaktornaya parametricheskaya model' ehffektivnosti organizatsionnykh reshenij po obespecheniyu kachestva stroitel'stva [Multifactor parametric model of

- Пенза : Пензенский государственный университет, 2018. C 111 114
- 16. Хомич, А. В. Декомпозиция задачи обучения нейронных сетей с учителем для понижения вычислительной сложности обучения / А. В. Хомич, Л. А. Жуков // Доклады Академии наук высшей школы Российской Федерации. 2005. № 1. С. 59 68.
- 17. Кабышев, О. А. Программная реализация алгоритма обучения нейронной сети / О.А. Кабышев, М.П. Маслаков, А.М. Кабышев // Инженерный вестник Дона. 2021. № 3 (75). С. 69–77.
- 18. Разработка процесса обучения нейронной сети типа feedforward с применением алгоритма "обучение с учителем" в спецификации aris / C.A. Петров, С.A. Ночвай, В.И. Ведейкис, Т. С. Куренкова. DOI 10.18411/sr-10-08-2018-01 // Наука России: Цели и задачи: Сборник научных трудов по материалам X Международной научной конференции, Екатеринбург, 10 августа 2018 года / Международная Объединённая Академия Наук. Екатеринбург: НИЦ «Л-Журнал», 2018. С. 5 7.
- 19. Южэнь, Л. Эффективность управления строительными проектами / Л. Южэнь, А. Т. Зуб // Инновации и инвестиции. 2020. № 10. С. 84–89.
 - the effectiveness of organizational decisions to ensure the quality of construction] / S. B. Sborshchikov, E. E. Bakhus // Promyshlennoe i grazhdanskoe stroitel'stvo [Industrial and Civil Engineering] 2018. No 12. Pp. 60–67.
- Pimenov, S. I. Urovni dekompozitsii stroitel'nykh tsifrovykh informatsionnykh modelei (4D-modelei) dlya zadach organizatsionno-tekhnologicheskogo modelirovaniya stroitel'nogo proizvodstva [Levels of decomposition of construction digital information models (4D-models) for the tasks of organizational and technological modeling of construction production] / S. I. Pimenov. DOI 10.32683/0536-1052-2023-770-2-65-78 // Izvestiya vysshikh uchebnykh zavedenij. Stroitel'stvo [News of higher educational institutions. Construction]. 2023. No. 2 (770). Pp. 65–78.
- 9. Udilov, N. S. Nejronnye seti: istoricheskij obzor razvitiya, formirovaniya i osobennosti nejronnykh setej v sravnenii s biologicheskimi setyami [Neural networks: historical overview of the development, formation and features of neural networks in comparison with biological networks] / N. S. Udilov. DOI 10.18411/trnio-02-2024-620 // Tendentsii razvitiya nauki i obrazovaniya [Trends in the development of science and education]. 2024. No. 106-11. Pp. 119–125.
- Lisykh, A. S. Nejronnye seti. Primenenie nejronnykh setej v avtomatizatsii protsessov [Neural networks. Application of neural networks in process automation] / A. S. Lisykh, A. A. Turchina, S. A. Shadrin // Issledovaniya molodykh uchyonykh : Materialy LIII Mezhdunarodnoj nauchnoj konferentsii, Kazan', 20–23 yanvarya 2023 goda [Research of young scientists: Proceedings of the LIII International Scientific Conference, Kazan, January 20-23, 2023]. Kazan : Molodoy uchyonyi, 2023. Pp. 1–6.
- 11. Beshelev, S. D. Ehkspertnye otsenki [Expert Assessment] / S. D. Beshelev, F. G. Gurvich. Moscow: Nauka, 1973. 163 p. (Problemy nauki i tekhnicheskogo progressa [Problems of Science and Technology Progress]).
- 12. Zhmurovsky, K. V. Nejronnye seti i kak oni rabotayut: osnovnye vidy i etapy razrabotki neyronnykh setey [Neural networks and how they work: main types and stages of neural network development] / K. V. Zhmurovsky // Sovremennye tendentsii i innovatsii vnauke i proizvodstve: Materialy XII Mezhdunarodnoj nauchno-prakticheskoj konferentsii, Mezhdurechensk, 26 aprelya 2023 goda [Modern trends and innovations in science and production: Materials of the XII International Scientific and Practical Conference, Mezhdurechensk, April 26, 2023] / Redkollegiya: T. N. Gvozdkova (otv. redaktor),

S. O. Markov [i dr.] [Editorial board: T. N. Gvozdkova (editorin-chief), S. O. Markov [and others]]. – Mezhdurechensk: Kuzbasskij gosudarstvennyj tekhnicheskij universitet imeni T. F. Gorbachyova [Kuzbass State Technical University named

- after T. F. Gorbachev], 2023. Pp. 417.1 417.3.

 13. Shakkouf, A. Review on Optimization Techniques of Binary Neural Networks / A. Shakkouf. DOI 10.17586/0021-3454-2023-66-11-926-935 // Journal of Instrument Engineering. 2023. Vol. 66, No. 11. Pp. 926–935.
- 14. Feofilov, D. S. Sravnitel'nyj analiz metodov obucheniya iskusstvennykh nejronnykh setey [Comparative analysis of training methods for artificial neural networks] / D.S. Feofilov // Tekhnika XXI veka glazami molodykh uchyonykh i spetsialistov [Technology of the 21st century through the eyes of young scientists and specialists]. 2022. No. 20. Pp. 382–385.
- 15. Savenkov, K. E. Metody differentsirovaniya dlya obucheniya iskusstvennykh nejronnykh setej [Differentiation methods for training artificial neural networks] / K. E. Savenkov // Informatsionnye tekhnologii v nauke i obrazovanii. Problemy i perspektivy: Sbornik nauchnykh statej Vserossiyskoj mezhvuzovskoj nauchno-prakticheskoj konferentsii, Penza, 14 marta 2018 goda [Information Technologies in Science and Education. Problems and Prospects: Collection of Scientific Articles of the All-Russian Interuniversity Scientific-Practical Conference, Penza, March 14, 2018] / Pod redaktsiej L. R. Fionovoj [Edited by L. R. Fionova]. Penza: Penzenskij gosudarstvennyj universitet [Penza State University], 2018. Pp. 111–114.
- 16. Khomich, A. V. Dekompozitsiya zadachi obucheniya nejronnykh setej s uchitelem dlya ponizheniya vychislitel'noj slozhnosti

- СТРОИТЕЛЬНОЕ ПРОИЗВОДСТВО № 4 (52)'2024
- obucheniya [Decomposition of the task of training neural networks with a teacher to reduce the computational complexity of training] / A. V. Khomich, L. A. Zhukov // Doklady Akademii nauk vysshej shkoly Rossiyskoj Federatsii [Reports of the Academy of Sciences of Higher School of the Russian Federation]. 2005. No. 1. Pp. 59–68.
- 17. Kabyshev, O. A. Programmaya realizatsiya algoritma obucheniya nejronnoj seti [Program realization of the neural network training algorithm] / O. A. Kabyshev, M. P. Maslakov, A. M. Kabyshev // Inzhenernyj vestnik Dona [Engineering Bulletin of the Don]. 2021. No. 3 (75). Pp. 69–77.
- 18. Razrabotka protsessa obucheniya nejronnoj seti tipa feedforward s primeneniem algoritma "obuchenie s uchitelem" v spetsifikatsii aris [Development of the training process of the feedforward neural network using the algorithm "training with a teacher" in aris specification] / S.A. Petrov, S.A. Nochvay, V. I. Vedeykis, T. S. Kurenkova. DOI 10.18411/sr-10-08-2018-01 // Nauka Rossii: Tseli i zadachi : Sbornik nauchnykh trudov po materialam X Mezhdunarodnoj nauchnoj konferentsii, Ekaterinburg, 10 avgusta 2018 goda [Science of Russia: Goals and objectives : Collection of scientific papers on the materials of the X International Scientific Conference, Yekaterinburg, August 10, 2018] / Mezhdunarodnaya Ob"edinyonnaya Akademiya Nauk [The International United Academy of Sciences]. Yekaterinburg : L-Zhurnal, 2018. Pp. 5 7.
- 19. Yuzhen, L. Ehffektivnost` upravleniya sroitel`nymi proektami [Efficiency of construction project managemen]. / L. Yuzhen, A. T. Zub // Innovatsii i investitsii [Innovations and Investments]. 2020. No. 10. Pp. 84–89.

УДК 69.007 DOI: 10.54950/26585340_2024_4_79

Методическое обеспечение подготовки студентов для активизации цифровой трансформации строительной отрасли

Methodological Support for the Preparation of Students to Activate the Digital Transformation of the Construction Industry

Фомин Никита Игоревич

Кандидат технических наук, доцент, директор Института строительства и архитектуры (ИСА УрФУ), заведующий кафедрой промышленного, гражданского строительства и экспертизы недвижимости, ФГАОУ ВО «Уральский федеральный университет имени первого Президента России Б. Н. Ельцина» (УрФУ), Россия, 620002, Екатеринбург, улица Мира, 19, ni.fomin@urfu.ru

Fomin Nikita Igorevich

Candidate of Engineering Sciences, Associate Professor, Director of the Institute of Construction and Architecture (ICA UrFU), Head of the Department of Industrial, Civil Engineering and Real Estate Expertise, Ural Federal University named after the First President of Russia B. N. Yeltsin (UrFU), Russia, 620002, Ekaterinburg, ulitsa Mira, 19, ni.fomin@urfu.ru

Бессонова Ольга Александровна

Старший преподаватель кафедры промышленного, гражданского строительства и экспертизы недвижимости, ФГАОУ ВО «Уральский федеральный университет имени первого Президента России Б. Н. Ельцина» (УрФУ), Россия, 620002, Екатеринбург, улица Мира, 19, o.a.bessonova@urfu.ru

Bessonova Olga Aleksandrovna

Senior Lecturer of Department of Industrial, Civil Engineering and Real Estate Expertise, Ural Federal University named after the First President of Russia B. N. Yeltsin (UrFU), Russia, Ekaterinburg, Mira, 19, o.a. bessonova@urfu.ru

Аннотация. Актуальность темы исследования обусловлена необходимостью кадрового обеспечения процесса цифровой трансформации строительной отрасли за счёт подготовки выпускников вузов архитектурно-строительного профиля, способных решать комплексные профессиональные задачи, требующие применения цифровых технологий в сочетании с технологиями инженерного творчества. Цель статьи заключается в определении возможности активации процесса цифровизации строительной отрасли с помощью двух педагогических

инструментов подготовки студентов вузов архитектурно-строительного профиля: комплексного применения игрофицированных электронных образовательных ресурсов и технологии формирования изобретательской компетентности.

В исследовании обобщён опыт Института строительства и архитектуры Уральского федерального университета. Определена структура игрофицированного электронного образовательного ресурса, выявлено, что применение таких ресурсов для профильных дисциплин повышает интерес студентов к учё-

бе, к активному изучению возможностей цифровых технологий и их применению на практике, стимулирует развитие навыков командной работы и проектной деятельности с использованием современных цифровых инструментов. Представлен авторский алгоритм дивергентного формирования патентоспособного решения в строительстве, являющийся методической базой

технологии формирования изобретательской компетентности. **Ключевые слова:** цифровая трансформация, вузы архитектурно-строительного профиля, педагогические инструменты, игрофикация, электронные образовательные ресурсы, изобретательская компетентность.

struction and Architecture of the Ural Federal University. The

structure of a gamified electronic educational resource is deter-

mined, it is revealed that the use of such resources for specialized

disciplines increases students' interest in learning, in actively ex-

ploring the possibilities of digital technologies and their applica-

tion in practice, stimulates the development of teamwork skills

and project activities using modern digital tools. The author's al-

gorithm for the divergent formation of a patentable solution in construction is presented, which is the methodological basis of

Abstract. The relevance of the research topic is due to the need for staffing the process of digital transformation of the construction industry through the training of graduates of universities of architectural and construction profile, capable of solving complex professional tasks requiring the use of digital technologies in combination with engineering technologies. The purpose of the article is as follows: based on the analysis of trends in the development of the digitalization process of the construction industry in Russia, to identify opportunities for its activation using two pedagogical tools in the process of preparing students of universities of architectural and construction profile: the integrated use of gamified electronic educational resources and technology for the formation of inventive competence.

Keywords: digital transformation, universities of architectural and construction profile, pedagogical tools, gamification, electronic educational resources, inventive competence.

the technology for the formation of inventive competence.

The study summarizes the experience of the Institute of Con-

Введение

В настоящее время одним из ключевых требований готовности специалистов строительной отрасли является наличие навыков и знаний в области генерации и использования высокотехнологичных цифровых решений.

Цель статьи — на основе анализа трендов развития процесса цифровизации строительной отрасли определить возможности для его активизации с помощью двух педагогических инструментов: применения игрофицированных электронных образовательных ресурсов (ИЭОР) и

технологии формирования изобретательской компетентности.

Для достижения цели авторами решены следующие задами:

- выполнен анализ современных цифровых технологий для определения трендов развития процесса цифровизации строительной отрасли;
- определены перспективы их применения в ближайшее время;

N пп.	Наименование цифровой технологии	Зада	чи, решаемые с на этапе возв		цифровых техн ельного объекта	
		Цифровые модели механизмов и машин	Моделирование процессов монтажа, анализ построечных дефектов	Контроль геометрии конструкций, инженерных коммуникаций	Цифровой проект производства отдельных строительных работ	Цифровая модель организации строительства
1	Texнология информационного моделирования зданий (Building Information Model – BIM)	_	+	+	+	-
2	Texнология информационного моделирования городов (City Information Modeling – CIM)	_	-	_	_	+
3	Технология бережливого строительства (Lean Construction – LC)	_	_	_	+	+
4	Технология интернета вещей (Internet of Things – IoT)	+	_	_	_	+
5	Texнология искусственного интеллекта (Artificial Intelligence – AI)	+	+	+	+	_
6	Облачные технологии (Cloud Computing – CC)	_	+	_	+	+
7	Роботизация	+	+	_	_	_
8	Дрон <i>(БПЛА)</i>	-	+	+	-	+
9	Технология префабрикации (цифровые фабрики)	+	+	+	+	+
10	Технология виртуальной реальности (Virtual Reality – VR)	+	+	+	+	-
11	Технология дополненной реальности (Augmented Reality – AR)	-	+	-	+	-

Табл. 1. Цифровые технологии и задачи на этапе возведения строительного объекта **Таb. 1.** Digital technologies and tasks at the stage of construction of a construction facility

Наименование раздела	Содержание раздела	Элемент Moodle в структуре ЭОР	Реализация в ЭОР
	Информация об авторе	Страница	Текст с фото автора курса
	Ведомости групп	Гиперссылка	Гиперссылка на файл excel
	Новости	Форум	Форум
Организационно- методический блок	Консультации офлайн	Форум	Форум, обратная связь
нетодический олок	Консультации онлайн	BigBlueButton	Видеоконференция
	Игра	Игра	Игры
	Посещение занятий	Тест, опрос	Мультитест Н5Р
Глоссарий	Толковый словарь	Глоссарий	Глоссарий, книга
	Методические рекомендации		Текст с указаниями
Методический блок	Рабочая программа	Файл	Файл
методический олок	График обучения	Гиперссылка	Гиперссылка
	Рейтинг-план		Гиперссылка
	Лекция 1.	Страница	Текст с аннотацией к лекции
	Тема 1 с вопросом или кластером вопросов для самопроверки.	Лекция	Лекционный структурированный и иллюстрированный материал
Информационный блок	Тема 2 с вопросом или кластером вопросов для самопроверки. Лекция 2	Гиперссылка	Гиперссылка на лекции в формате mp4, pdf
	, , , , , , , , , , , , , , , , , , ,	Тайник	Тайник для хранения спрятанных в лекциях значков
		Место обмена	Место обмена значков
	Тайная комната	Тайник, задание	Тайник для хранения значков
	Тест входного контроля		Тесты
Контролирующий блок	Тест по зачёту	Тест	Гиперссылка на независимый
	Тест по экзамену		тестовый контроль
	Практические работы	Тест или задание	Тесты с автоматизированной
Обучающий блок	Расчётно-графические работы		проверкой задач
•	Курсовой проект	Семинар	Задания со взаимным оцениванием работ по шаблону (рубрика)

Табл. 2. Структура игрофицированного электронного образовательного ресурса ИЭОР **Таb. 2.** The structure of a gamified electronic educational resource

 разработаны две методики подготовки студентов в вузах архитектурно-строительного профиля для обеспечения активизации цифровой трансформации строительной отрасли.

Методологической базой послужили теории: информационно-технологического и компетентностного подходов в высшем образовании для совершенствования подготовки студентов в области инженерного творчества и отраслевого изобретательства.

Актуальность исследования обусловлена необходимостью кадрового обеспечения процесса цифровой трансформации строительной отрасли за счёт подготовки студентов вузов архитектурно-строительного профиля, способных решать комплексные профессиональные задачи, требующие применения цифровых технологий, а также их развития на базе инженерного творчества.

Научная новизна работы заключается в разработке методического обеспечения процесса подготовки студентов в вузах архитектурно-строительного профиля для активизации цифровой трансформации строительной отрасли, выраженной в расширении масштабного и профессионального применения эффективных цифровых технологий на этапах жизненного цикла строительных объектов.

Материалы и методы

Основой исследования послужили фундаментальные труды в области основных направлений методологии научного познания: информационно-технологического подхода (Роберт И. В. [1]); теории и практики информатизации образования (Миронова Л. И. [2]); разработки и использования ЭОР (Богомаз И. В. [3]); теории компетентностного подхода (Зимняя И. А. [4]); теории игрофи-

кации (Вербах К., Хантер Д. [5]); технологий отраслевого изобретательства в промышленности и строительстве (Коротич А. В., Фомин Н. И. [6]); исследований уровня цифровизации на предприятиях инвестиционно-строительной сферы и в целом строительной отрасли (Кисель Т. Н., Прохорова Ю. С. [7]).

Результаты

В таблице 1 представлены ранжированный перечень (начиная от наиболее массово применяемых) цифровых технологий, отражающих тренды развития процесса цифровизации отечественной строительной отрасли, и ряд задач, решаемых с помощью цифровых технологий (указаны знаком «+»).

Проведённый анализ современных цифровых технологий, а также целей и задач национальных проектов РФ [8] позволяет сделать вывод о том, что вузы архитектурностроительного профиля должны ориентироваться на подготовку бакалавров, магистров и специалистов, обладающих компетентностью такого уровня, который позволит им решать комплексные профессиональные задачи, требующие профессионального владения современными цифровыми технологиями, а также потенциалом к их развитию и масштабному применению (на базе инженерного творчества) на разных этапах жизненного цикла строительных объектов.

Для обеспечения возможности подготовки выпускников, отвечающих не только современным требованиям образовательных стандартов и работодателей, но также задаче цифровой трансформации строительной отрасли, в Институте строительства и архитектуры Уральского федерального университета (далее по тексту — Институт) наряду с традиционными методиками обучения разрабо-

Рис. 1. Авторский алгоритм дивергентного (эволюционного) формирования патентоспособного решения в строительстве [10] **Fig. 1.** The algorithm of divergent (evolutionary) formation of a patentable solution in construction

изобретения и её проверка

таны и широко применяются игрофицированные электронные образовательные ресурсы (ИЭОР) и технология формирования изобретательской компетентности.

изобретения

Комплексное применение ИЭОР в образовательном процессе

В Институте разработаны и внедрены с 2020/2021 учебного года ИЭОР для комплекса профильных дисциплин: «Организация, управление и планирование строительным производством»; «Основы технической эксплуатации зданий и сооружений»; «Техническая экспертиза и технология реконструкции зданий».

Типовая структура ИЭОР, разработанная в образовательной среде «Moodle», приведена в таблице 2. Для разных дисциплин и уровней подготовки содержание разделов, наполненность элементами игрофикации, способы, сроки оценивания могут варьироваться.

Опыт использования ИЭОР в Институте показал, что их можно применять как инструмент повышения моти-

вации студентов к учёбе, поскольку игровая технология, включающая организованную систему вознаграждений, поисковые и аналитические задания, способствует формированию умений и опыта командной работы и управленческой деятельности. Технологически сбалансированный комплекс ИЭОР позволяет проводить обучение в удобной и увлекательной для студентов форме, с гарантированно высоким результатом формирования требуемых компетенций по активному применению цифровых технологий в профессиональной деятельности, а игрофикация способствует возникновению и поддержанию мотивации к учёбе со стороны студентов.

Важным элементом ИЭОР являются специальные, регулярно обновляемые учебные задания, ориентированные на изучение и формирование практических навыков применения цифровых технологий для этапов проектирования, строительства и эксплуатации строительного объекта. Для обеспечения практической возможности

не только активного использования, но также совершенствования цифровых технологий в профессиональной деятельности у выпускников вузов необходимо сформировать дополнительную (не предусмотренную образовательным стандартом) компетенцию — изобретательскую компетентность. Для этого в Институте была разработана специальная методика.

Технология формирования изобретательской компетентности

Технология формирования изобретательской компетентности позволяет студентам выявить причинно-следственные связи экспериментально наблюдаемых или теоретически анализируемых фактов; самостоятельно применить методы и инструменты отраслевого изобретательства; создать новые технические решения, удовлетворяющие критериям патентоспособности, по различным перспективным направлениям развития строительной отрасли, включая решения с применением цифровых технологий [9].

Ключевым элементом методики формирования изобретательской компетентности является алгоритм дивергентного (эволюционного) формирования патентоспособного решения, разработанный на основе более чем 10-летнего опыта работы одного из авторов со студентами Института в области отраслевого изобретательства. Эффективность методики подтверждена получением студентами Института (совместно с преподавателями) более 30 патентов на изобретения и полезные модели.

Алгоритм дивергентного формирования патентоспособного решения представлен на рисунке 1 (составлен на алгоритмическом языке ДРАКОН). В соответствии с алгоритмом, разработка нового патентоспособного решения совершается в результате выявления необходимости в устранении недостатков в разработанных решениях. Таким образом, задачей изобретения или полезной модели становится устранение выявленного недостатка.

СПИСОК ЛИТЕРАТУРЫ

- Роберт, И. В. Фундаментальные научные исследования в области информатизации отечественного образования / И. В. Роберт // Педагогическая информатика. – 2014. – № 3. – С. 8–19.
- 2. Миронова, Л. И. Облачная информационно-проектировочная среда как часть цифровой экосистемы в строительстве / Л. И. Миронова, А. Д. Вилисова // Педагогическая информатика. 2021. № 4. С. 3–8. URL: https://elibrary.ru/item.asp?id=47569340 (дата обращения: 16.08.2024).
- Богомаз, И. В. Научно-методические основы базовой подготовки студентов инженерно-строительных специальностей в условиях проективно-информационного подхода: дис. ... д-ра пед. наук: 13.00.02 / Богомаз Ирина Владимировна; Институт информатизации образования Российской академии образования. Москва, 2012. 313 с. Текст: непосредственный.
- 4. Зимняя, И. А. Компетентностный подход. Каково его место в системе подходов к проблемам образования? / И. А. Зимняя // Высшее образование сегодня. 2006. № 8. С. 20 26.
- Вербах, К. Вовлекай и властвуй. Игровое мышление на службе бизнеса / К. Вербах, Д. Хантер. Москва : Манн, Иванов и Фербер. 2015. 30 с. URL: https://library.cbr.ru/catalog/lib/books/347433/?ysclid=lzw83wa hzl585026122 (дата об-

СТРОИТЕЛЬНОЕ ПРОИЗВОДСТВО № 4 (52)'2024

Опыт подготовки будущих строителей и архитекторов в Институте показал, что изобретательство рационально использовать для решения сложных и фронтирных отраслевых задач, значительная часть которых связана с цифровыми технологиями и объективной необходимостью их масштабного применения. Через образовательные процессы формирования изобретательской компетенции студенты получают не только комплексное представление о возможностях цифровых технологий, осуществляя информационный или (как частный случай) патентный поиск, но также предлагают оригинальные и промышленно применимые варианты их практического использования. Такой подход к изучению возможностей цифровых технологий через их совершенствование¹ в патентоспособных технических решениях обеспечивает решение задачи активизации процесса цифровой трансформации строительной отрасли.

По мере внедрения разработанной технологии ожидается не только рост запатентованных студентами технических решений, в которых предусмотрено совершенствование строительных процессов, но также развитие спектра цифровых технологий за счёт новых изобретений.

Заключение

В статье представлен вариант решения задачи масштабной цифровой трансформации строительной отрасли за счёт методического обеспечения процесса подготовки студентов в вузах архитектурно-строительного профиля. Разработанные методики подготовки студентов в вузах архитектурно-строительного профиля направлены:

- на активное применение выпускниками вузов цифровых технологий в профессиональной деятельности (комплексное применение ИЭОР);
- на практическую возможность совершенствования цифровых технологий на этапах жизненного цикла строительных объектов (технология формирования изобретательской компетентности).

рашения: 10.01.2023).

- 6. Коротич, А. В. Методические возможности решения изобретательских задач в архитектуре и строительстве / А. В. Коротич, Н. И. Фомин. DOI 10.22337/2077-9038-2024-1-103-112 / Academia. Архитектура и строительство. 2024. № 1. С. 103 112.
- Кисель, Т. Н. Исследование уровня цифровизации на российских предприятиях инвестиционно-строительной сферы : монография / Т. Н. Кисель, Ю. С. Прохорова. Москва : Издательство МИСИ МГСУ. 2023. 53 с. URL: https://studylib.ru/doc/6622274/cifrovizaciya?ysclid=m2lfu85cgk906733365 (дата обращения: 23.10.2024).
- Национальные проекты России : [сайт]. Москва. URL: https://национальныепроекты.pф/projects/ (дата обращения: 10.08.2024).
- 9. Фомин, Н. И. Разработка и защита технических решений в строительстве: учебник / Н. И. Фомин, Ю. Д. Лысова. Екатеринбург: Издательство Уральского университета. 2020. 156 с. URL: http://elar.urfu.ru/handle/10995/87570 (дата обращения: 23.10.2024).
- Фомин, Н. И. Алгоритм формирования патентоспособного решения в строительстве для начинающих изобретателей / Н. И. Фомин // Современные инженерные проблемы ключевых отраслей экономики страны : сборник научных тру-

¹ Патент РФ № 2758806, МПК Е04 G 23/00. Способ подготовки к оценке технического состояния зданий по внешним признакам / Н. И. Фомин, К. В. Бернгардт, Е. А. Орлова, Э. Н. Идиятшина. – № 2020140697; заявл. 10.12.2020; опубл. 02.11.2021, Бюл. № 31. – 5 с. (Показан пример патентоспособного технического решения, разработанного студентами и преподавателями Института по применению и совершенствованию цифровых технологий на этапе эксплуатации строительного объекта.)

тета», Москва, 20-22 февраля 2024 г.; организаторы РГУ им. А. Н. Косыгина, Международная академия, Российская инженерная академия. - Москва, 2024. - С. 368-370.

- 1. Robert, I.V. Fundamental'nye nauchnye issledovaniya v oblasti informatizatsii otechestvennogo obrazovaniya [Fundamental scientific research in the field of informatization of domestic education] / I. V. Robert // Pedagogicheskaya informatika [Pedagogical informatics]. – 2014. – No. 3. – Pp. 8–19.
- 2. Mironova, L. I. Oblachnaya informatsionno-proektirovochnaya sreda kak chast' tsifrovoj ehkosistemy v stroitel'stve [Cloud information and design environment as part of the digital ecosystem in construction] / L. I. Mironova, A. D. Vilisova // Pedagogicheskaya informatika [Pedagogical informatics]. -2021. - No. 4. - Pp. 3-8.
- 3. Bogomaz, I. V. Nauchno-metodicheskie osnovy bazovoj podgotovki studentov inzhenerno-stroitel'nykh spetsial'nostej v usloviyakh proektivno-informatsionnogo podkhoda : dissertatsiya doktora pedaqoqicheskikh nauk : 13.00.02 [Scientific and methodological foundations of the basic training of students of engineering and construction specialties in the conditions of a projective information approach : dissertation of the Doctor of Pedagogical Sciences: 13.00.02] / Bogomaz Irina Vladimirovna ; Institut informatizatsii obrazovaniya Rossijskoj akademii obrazovaniya [Institute of Informatization of Education of the Russian Academy of Education]. - Moscow, 2012. – 313 p. – Text: direct.
- 4. Zimnyaya, I. A. Kompetentnostnyj podkhod. Kakovo ego mesto v sisteme podkhodov k problemam obrazovaniya? [A competency-based approach. What is its place in the system of approaches to the problems of education?] / I. A. Zimnyaya // Vysshee obrazovanie segodnya [Higher education today]. -2006. - No. 28. - Pp. 16-26.
- 5. Verbah, K. Vovlekaj i vlastvuj. Igrovoe myshlenie na sluzhbe biznesa [Engage and dominate. Game thinking in the service of business] / K. Verbah, D. Hanter. - Moscow: Mann, Ivanov and Ferber Publishing House, 2015. - 30 p. - URL: https:// library.cbr.ru/catalog/lib/books/347433/?ysclid=lzw83wa hzl585026122.
- 6. Korotich, A. V. Metodicheskie vozmozhnosti resheniya izobretatel'skikh zadach v arkhitekture i stroitel'stve

- [Methodological possibilities of solving inventive tasks in architecture and construction] / A. V. Korotich, N. I. Fomin // Academia. Arkhitektura i stroitel'stvo [Academia. Architecture and construction]. - 2024. - No. 1. - Pp. 103-112.
- Kisel, T. N. Issledovanie urovnya tsifrovizatsii na rossijskikh predpriyatiyakh investitsionno-stroitel'noj sfery: monografiya [A study of the level of digitalization at Russian enterprises in the investment and construction sector: monograph] / T. N. Kisel, Yu. S. Prokhorova. – Moscow: MISI – MGSU Publishing House, 2023. – 53 p. – URL: https://studylib.ru/doc/6622274/ci frovizaciya?ysclid=m2lfu85cqk906733365.
- 8. Nacional'nye proekty Rossii [National projects of Russia] : [electronic resource]. - Moscow. - URL: https://национальныепроекты.pф/projects/.
- 9. Fomin, N. I. Razrabotka i zashhita tekhnicheskikh reshenij v stroitel'stve: uchebnik [Development and protection of technical solutions in construction: textbook] / N. I. Fomin, Yu. D. Lysova. – Yekaterinburg: Ural University Publishing House, 2020. – 156 p. – URL: http://elar.urfu.ru/handle/10995/87570.
- 10. Fomin, N. I. Algoritm formirovaniya patentosposobnogo resheniya v stroitel'stve dlya nachinayushhikh izobretatelej [An algorithm for the formation of a patentable solution in construction for novice inventors] / N. I. Fomin // Sovremennye inzhenernye problemy klyuchevykh otraslej ehkonomiki strany : sbornik nauchnykh trudov Mezhdunarodnogo nauchno-tekhnicheskogo simpoziuma [Modern engineering problems of key sectors of the country's economy: proceedings of the International Scientific and Technical Symposium] / IV Mezhdunarodnyj Kosyginskij forum «Problemy inzhenernykh nauk: formirovanie tekhnologicheskogo suvereniteta», Moskva, 20-22 fevralya 2024 g.; organizatory RGU im. A. N. Kosygina, Mezhdunarodnaya akademiya, Rossijskaya inzhenernaya akademiya [IV International Kosyginsky Forum "Problems of Engineering Sciences: formation of technological sovereignty", Moscow, February 20-22, 2024.; organizers: A. N. Kosygin Russian State University, International Academy, Russian Academy of Engineering]. – Moscow, 2024. – Pp. 368–370.

УДК 69.052

Россия, 129090, Москва, проспект Мира, 19, строение 3

DOI: 10.54950/26585340_2024_4_84

Основные современные подходы при определении необходимости и приоритетности строительства улично-дорожной сети для застройки

Key Modern Approaches to Determining the Necessity and Prioritization of Street and Road Network Construction for Urban Development

Киевский Илья Леонидович

Доктор технических наук, профессор, профессор кафедры «Технологии и организация строительного производства», ФГБОУ ВО «Национальный исследовательский Московский государственный строительный университет» (НИУ МГСУ), Россия, 129337, Москва, Ярославское шоссе, 26; Генеральный директор, ООО НПЦ «Развитие города», Россия, 129090, Москва, проспект Мира, 19, строение 3

Kievsky Ilya Leonidovich

Doctor of Technical Sciences, Professor, Professor of the Department of Technologies and Organization of Construction Production, National Research Moscow State University of Civil Engineering (NRU MGSU), Russia, 129337, Moscow, Yaroslavskoe shosse, 26; General Director, RDC "City Development", Russia, 129090, Moscow, prospekt Mira, 19, stroenie 3

Дёмин Вадим Дмитриевич

Аспирант кафедры «Технологии и организация строительного производства», ФГБОУ ВО «Национальный исследовательский Московский государственный строительный университет» (НИУ МГСУ), Россия, 129337, Москва, Ярославское шоссе, 26; начальник отдела, ООО НПЦ «Развитие города»,

© Киевский И. Л., Дёмин В. Д., 2024, Строительное производство № 4'2024

Demin Vadim Dmitrievich

Postgraduate student of the Department of Technologies and Organization of Construction Production, National Research Moscow State University of Civil Engineering (NRU MGSU), Russia, 129337, Moscow, Yaroslavskoe shosse, 26; Department Head, RDC "City Development", Russia, 129090, Moscow, prospect Mira, 19, stroenie 3

Аннотация. Активное градостроительное развитие в части жилой и нежилой застройки, включая реализацию комплексных проектов по строительству многофункциональных жилых комплексов, а также масштабных городских проектов, таких, как программа реновации, влечёт за собой увеличение объёмов строительства и ввода объектов транспортной и инженерной инфраструктуры. При этом следует отметить, что в условиях городской застройки и общего тренда на развитие систем наземного городского пассажирского транспорта наибольшее значение необходимо уделить развитию улично-дорожной сети, обеспечивающей непосредственную транспортную доступность для новых объектов капитального строительства гражданского и промышленного назначения.

Среди основных задач, стоящих как перед городом в лице

Abstract. Active urban development in residential and nonresidential construction, including the implementation of complex projects for the construction of multifunctional residential complexes, as well as large-scale urban initiatives such as the Renovation Program, leads to an increase in the volume of construction and commissioning of transport and engineering infrastructure facilities. It is worth noting that in the context of urban development and the general trend toward enhancing surface urban public transportation systems, the highest priority must be given to the development of street and road networks. These networks ensure direct transport accessibility to new civil and industrial capital construction projects.

Among the key challenges faced by the city, represented by

Введение

В настоящее время активно развивается комплексный подход к развитию городских территорий, при котором объекты капитального строительства возводятся в рамках квартальной застройки, проектов планировки территории, масштабных градостроительных проектов, а также проектов по комплексному развитию территории. При таком подходе необходимо учитывать значительно возрастающую нагрузку на существующую городскую инфраструктуру, в особенности необходимо уделить внимание развитию транспортной инфраструктуры, необходимой для обеспечения объектов нового строительства, в частности, необходимыми объектами улично-дорожной сети [1].

Целью настоящего исследования является рассмотрение существующих сегодня подходов к определению необходимости, целесообразности и приоритетности строительства объектов улично-дорожной сети для обеспечения транспортной доступности территорий новой застройки. По результатам анализа существующих методов и подходов к определению необходимости, целесообразности и приоритетности строительства объектов улично-дорожной сети для обеспечения транспортной доступности территорий новой застройки может быть выработана универсальная методология, применимая для наиболее эффективного принятия решений о приоритетности строительства улично-дорожной сети при реализации комплексов объектов капитального строительства в городских условиях.

Материалы и методы

В процессе работы над настоящим исследованием были рассмотрены основные нормативные законодательные акты, регламентирующие процесс строительства органов исполнительной власти и органов местного управления, так и перед застройщиками и инвесторами, одной из важнейших является повышение качества принятия решений при строительстве объектов транспортной инфраструктуры, необходимой для обеспечения новой застройки. В настоящей статье автором рассмотрены основные подходы, применяющиеся сегодня в городах мира для определения необходимости и приоритетности реализации мероприятий по развитию транспортной инфраструктуры и строительства объектов улично-дорожной сети. Особое внимание уделяется критериям выбора, основанным на социально-экономической и градостроительной необходимости при вводе новой застройки.

Ключевые слова: улично-дорожная сеть, транспортная инфраструктура, комплексная застройка, жилое строительство.

executive authorities and local governments, as well as developers and investors, one of the most critical is improving the quality of decision-making in the construction of transport infrastructure necessary to support new developments. This article examines the main approaches currently employed in global cities to determine the necessity and prioritization of measures for developing transport infrastructure and constructing street and road networks. Special attention is given to selection criteria based on socio-economic and urban planning needs in the context of introducing new developments.

Keywords: street and road network, transportation infrastructure, comprehensive development, capital construction projects.

объектов транспортной инфраструктуры, а также отечественный и зарубежный опыт создания объектов уличнодорожной сети для обеспечения застройки.

Существующее законодательство. Градостроительный кодекс РФ является основным документом, регулирующим градостроительную деятельность на территории Российской Федерации. В статье 35 Градостроительного кодекса указывается, что улично-дорожная сеть (далее – УДС) должна быть обеспечена документацией по планировке территорий, включая проекты планировки территории, проекты межевания и градостроительные планы земельных участков [2]. Данная документация содержит информацию о размещении объектов УДС, их характеристиках, а также сведения о зонах планируемого размещения объектов транспортной инфраструктуры. Статья 48 Градостроительного кодекса регламентирует проведение государственной экспертизы проектной документации и результатов инженерных изысканий для объектов УДС в соответствии с действующим законодательством о градостроительной деятельности [2; 3].

Проект планировки территории является документацией по планировке территории, подготавливаемой для выделения элементов планировочной структуры, установления параметров планируемого развития элементов планировочной структуры в целях установления зон планируемого размещения объектов [4]. В проекте планировки территории отражаются основные параметры застройки, а также обязательства участников инвестиционно-строительного процесса по реализации строительства на рассматриваемой территории. Согласно части 11 статьи 48 Градостроительного кодекса РФ, проект планировки и проект межевания территории являются основанием для подготовки проектной документации линейного объекта [2]. Проект планировки территории утверждается органами местного самоуправления или уполномоченными федеральными органами исполнительной власти в случаях, предусмотренных градостроительным законодательством [5; 6].

В связи с тем, что градостроительное развитие всегда связано со сложным комплексом технических, логистических и экономических процедур, процесс строительства объектов на любой территории всегда происходит по заранее разработанным планам и директивным графикам, что позволяет обеспечивать процессы планирования и контроля со стороны соответствующих контролирующих и надзорных органов. Например, в Москве объекты, реализующиеся за счёт средств городского бюджета, отражаются в таком документе, как Адресная инвестиционная программа (АИП) города Москвы – она определяет основные направления и объёмы государственных капитальных вложений в развитие различных сфер жизнедеятельности города на среднесрочный период [7]. В рамках данной программы реализуются важнейшие инфраструктурные проекты, такие как строительство новых школ, детских садов, больниц, спортивных объектов, а также развитие транспортной, социальной и других важных сфер.

Также необходимо отметить, что в Москве на сегодняшний день реализуется крупнейший строительный проект — программа реновации, в рамках которой также ежегодно осуществляется реализация более 1 миллиона квадратных метров жилой недвижимости. Строительство объектов по программе реновации осуществляется в соответствии с ежегодно утверждаемыми директивными графиками [8; 9].

Что касается объектов, планируемых к реализации за счёт внебюджетных источников финансирования, то они строятся в соответствии с Адресным перечнем ввода объектов недвижимости, который формируется на основании представления префектур административных округов Департаментом градостроительной политики города Москвы на трёхлетний период и утверждается заместителем Мэра Москвы по вопросам градостроительной политики [10].

Вышеуказанные документы являются обязательными к соблюдению государственными заказчиками и застрой-

щиками и определяют основные планы и сроки выполнения мероприятий по строительству объектов и комплексов объектов капитального строительства на территории города Москвы.

Также необходимо отметить, что Департаментом градостроительной политики города Москвы осуществляется контроль за реализацией проектов планировки территории в городе Москве, что также неразрывно связано с вопросом взаимоувязки сроков реализации объектов капитального строительства промышленного и гражданского назначения со строительством необходимых для их обслуживания объектов улично-дорожной сети.

Процесс принятия решения о целесообразности и приоритетности реализации объектов транспортной инфраструктуры для обеспечения новой застройки происходит на основании сопоставления мероприятий, предусмотренных проектами планировки территории по развитию транспортной инфраструктуры, и показателей ввода и стадии готовности объектов, запланированных к вводу на рассматриваемой территории. Укрупнённая схема принятия решения о реализации объектов транспортной инфраструктуры для застройки на территории города Москвы отражена на рисунке 1.

Мировой опыт. Учитывая значительные объёмы реализации вышеуказанных мероприятий, для любого крупного города неизбежно становится актуальным вопрос о необходимости контроля и синхронизации процессов строительства комплексов объектов капитального строительства, как жилого, так и нежилого назначения, и объектов транспортной инфраструктуры [5].

В рамках произведённого анализа были рассмотрены актуальные подходы, которые используются в таких городах, как Сеул, Сидней, Берлин, Лондон.

В Южной Корее (Сеул) при оценке и приоритезации реализации строительства объектов транспортной инфраструктуры используется мультикритериальный анализ, в ходе которого эксперты определяют весовые коэффициенты (A) для каждой их трёх групп выгод:

- выгоды для пользователей транспорта,
- выгоды для общества,
- выгоды для государства.

Эксперты определяют весовые коэффициенты для эффектов внутри каждой группы выгод [11]. По итогам

Рис. 1. Схема процесса принятия решений о транспортном обеспечении объектов капитального строительства в городе Москве **Fig. 1.** Framework for the decision-making process regarding transportation support for capital construction projects in the city of Moscow

работы экспертов формируются итоговые показатели проекта, которые представляют собой произведение весовых коэффициентов и нормализованных значений эффектов [11].

В Австралии (Сидней) используется специализированный подход к развитию инфрастурктуры Infrastructure Australia's Assessment Framework. В соответствии с данным подходом, каждый из проектов транспортной инфраструктуры, предлагаемый к реализации на территории города, проходит три этапа проверки на соответствие необходимым требованиям, в т. ч. стратегическим, бюджетным, безопасности, реализуемости, а также экологическим. Далее по результатам оценки применяется метод оценки выгод и затрат. Из полученного перечня проекты, прошедшие предыдущие этапы отбора, подвергаются наиболее детальному рассмотрению по отношению выгод к затратам. [12]

Германия (Берлин) также использует в качестве основного критерия оценки проектов по развитию транспортной инфраструктуры выгоды от экономических эффектов. В основе методологии Министерства транспорта Германии «Methodology Manual for the Federal Transport Infrastructure Plan 2030» лежат следующие основные этапы анализа:

Этап 1. Оценка затрат и выгод. На данном этапе учитываются транспортные, экономические и экологические показатели.

Этап 2. Экологическое влияние проектов. На данном этапе из выборки исключаются проекты с высокими экологическими рисками.

Этап 3. Оценка влияния на развитие территорий и связанность. Осуществляется выбор проектов со значительным вкладов в развитие территории для реализации в первую очередь:

- 1. Оценка влияния проектов на связанность территорий;
- 2. Оценка влияния проектов на развитие территорий;
- 3. Проекты с высоким вкладом в связность или развитие территорий становятся приоритетными в реализации [13].

В Великобритании (Лондон) применяется подход, близкий к используемому в Германии. На основании подхода, описанного в документе «The green book central government guidance on appraisal and evaluation», при оценке приоритетности строительства объектов транспортной инфраструктуры применяется анализ затрат и выгод (анализ экономической эффективности (BCR)). Осуществляется приоритезация проектов на основе отношения выгод к затратам. По итогам экспертной оценки проект получает одну из категорий приоритетности к реализации:

- BCR > 4 очень высокая,
- 2 < BCR < 4 высокая,
- 1.5 < BCR < 2 средняя,
- 1 < BCR < 1.5 низкая.
- 0 < BCR < 1- очень низкая.

На основании произведённого исследования можно сделать следующие основные выводы.

Наиболее значимыми показателями, влияющими на принятие решения о целесообразности и приоритетности реализации проектов по развитию транспортной инфраструктуры на территории основных развитых городов, являются результаты анализа экономической эффектив-

СТРОИТЕЛЬНОЕ ПРОИЗВОДСТВО № 4 (52)'2024

ности (BCR), анализа затрат и выгод, включающего повышение экологичности, развитие общественного транспорта и пешеходного движения, а также велодвижения, сокращение времени в пути, нулевую смертность на дорогах. Необходимо отметить, что анализ происходит как на основании планируемых экономических показателей по проекту, так и на основании экспертных оценок по отдельным показателям [14].

Cost-benefit метод («затраты-выгоды») является самым часто применяемым методом анализа и ранжирования проектов, позволяющим оценить общественные выгоды в соотношении с вложенными государственными и (или) частными инвестициями.

Преимущества:

- Возможность привести множество различных факторов к единому (монетарному) знаменателю;
- Учёт развития проекта во времени (на протяжении срока службы).

Недостатки:

- Сложности с оценкой немонетарных факторов (например, влияния на экологию);
- Сложность учёта макроэкономических эффектов (например, создания рабочих мест);
- Возможна недооценка проектных затрат и переоценка преимуществ проекта;
- Сложности с оценкой немонетарных эффектов (влияние на здоровье);
- Намеренные манипуляции с расчётами (политический фактор).

При этом всё большее применение в мировой практике начинают получать информационные системы, позволяющие наиболее эффективно принимать решения о необходимости и целесообразности реализации тех или иных объектов. Одной из областей, где эти системы оказывают значительную поддержку, является процесс принятия решений [15; 16].

Ещё одним значимым трендом в развитии транспортной инфраструктуры в мегаполисах мира является привлечение инструментов софинансирования и государственно-частного партнёрства. Государственно-частные партнёрства получают всё большее распространение как инновационный инструмент для устранения недостатка динамики традиционных каналов инвестирования государственных органов и стимулирования развития транспортной инфраструктуры путём поощрения участия частных инвесторов. При этом низкое качество механизмов сотрудничества между государственными учреждениями и частными организациями считается одной из основных причин, приводящих к задержкам в реализации проектов и необходимости неожиданных повторных переговоров, что приводит к непредвиденным событиям, неподконтрольным сторонам контракта, как следствие, влечёт за собой увеличение сроков и удорожание проекта [17].

Результаты

Применяемая в настоящее время нормативная база, существующая на территории Российской Федерации, полностью охватывает процесс возведения новой застройки и обслуживающей её транспортной инфраструктуры на всех этапах их жизненного цикла. Органами исполнительной власти и территориальными органами местного управления выстроена работа по синхронизации и контролю за исполнением городом и инвесторами обяза-

тельств по своевременному вводу объектов капитального строительства и объектов улично-дорожной сети. При этом на сегодняшний день отсутствует единая методология, служащая для принятия решений о целесообразности и приоритетности строительства объектов транспортной инфраструктуры, включая улично-дорожную сеть, необходимых для обеспечения новой застройки, что не позволяет реализовать наиболее эффективное управление инвестициями в развитие транспортной инфраструктуры городов [5].

Значительная часть мировых исследований городов, а также практики, применяемых в ведущих мировых столицах, сосредоточены на социальных, экономических и транспортных результатах исходя из текущих реалий и сложившихся условий городской застройки и не учитывают в своих прогнозах и расчётах прирост площадей и численности населения на конкретных территориях с учётом запланированного ввода комплексов объектов капитального строительства, что слабо применимо к городам, где в условиях плотной городской застройки происходит

СПИСОК ЛИТЕРАТУРЫ

- 1. Киевский, Л. В. Дорожно-мостовое строительство в сложившейся городской среде / Л. В. Киевский, И. Л. Киевский // Промышленное и гражданское строительство. - 2009. -№ 4. – C. 3–6.
- 2. Градостроительный кодекс Российской Федерации (с изменениями на 13 июня 2023 года) : принят Государственной Думой 22 декабря 2004 года : одобрен Советом Федерации 24 декабря 2004 года. - Москва, 2004.
- 3. Власов, Д. Н. К вопросу определения качества транспортного обслуживания при разработке документации по планировке территории / Д. Н. Власов, И. Н. Лобачева // Современные проблемы науки и образования. – 2013. – № 6. – С. 47.
- 4. Об утверждении Положения о составе, порядке подготовки, согласования и представления на утверждение проектов планировки территорий в городе Москве: Постановление Правительства Москвы от 6 апреля 2010 года № 270-ПП / 3AO «Кодекс». – Москва, 2010. – URL: https://docs.cntd.ru/ document/3717744.
- 5. Сурин, Г. Д. Информационно-аналитический инструмент для мониторинга транспортной инфраструктуры в городе Москве / Г. Д. Сурин, В. Д. Демин, Д. Л. Макаров. – DOI 10.33622/0869-7019.2023.11.26-30 // Промышленное и гражданское строительство. - 2023. - № 11. - С. 26-30.
- 6. Сурин, Г. Д. Методологические подходы формирования перечней объектов застройки и объектов транспортной инфраструктуры на основе градостроительного анализа их совместного влияния / Г. Д. Сурин, В. Д. Демин, Д. Л. Макаров // Строительство и архитектура. – 2023. – Т. 11, № 4. – С. 61–67.
- 7. Об Адресной инвестиционной программе города Москвы на 2023-2026 годы: Постановление правительства Москвы от 10 октября 2023 года № 1930-ПП / АО «Кодекс» ; Вестник Москвы. – 14.11.2023. – Т. 1, № 62.
- 8. Киевский, Л. В. Теория реновации / Л. В. Киевский, И. Л. Киевский. - Москва: Столица, 2023. - 528 с.
- 9. Киевский И. Л. Управление и координация крупномасштабными проектами рассредоточенного строительства в городе Москве на примере Программы реновации / Л. В. Киевский // Реновация. Крупномасштабный городской проект рассредоточенного строительства: монография о научнометодических подходах и начале реализации программы / под ред. И. Л. Киевского. - Москва : Русская школа, 2018. -

реорганизация целых кварталов, к каким, к примеру, относится и Москва.

Заключение

Результаты, полученные по итогам проведённого исследования:

- могут быть применены для дальнейшей проработки при исследовании прочих инфраструктурных направлений, таких как развитие инженерной и социальной инфраструктуры в условиях реализации комплексов объектов капитального строительства;
- могут служить предпосылкой для дальнейшей разработки единого алгоритма и методики определения необходимости и приоритетности реализации мероприятий по строительству объектов транспортной инфраструктуры, необходимой для качественного и своевременного обеспечения комплексов объектов капитального строительства, планируемых к строительству и строящихся на городских территориях.

C. 11 - 33.

- 10. Об утверждении Положения о Департаменте градостроительной политики города Москвы (в редакции постановлений Правительства Москвы от 18 декабря 2018 г. № 1582-ПП : Постановление Правительства Москвы от 31 марта 2011 года № 99-ПП / АО «Кодекс». – Москва, 2011.
- 11. Tabucanon, M. T. Multiple criteria evaluation of transportation system improvement projects: The case of korea / M. T. Tabucanon, H.-M. Lee. - DOI https://doi.org/10.1002/ atr.5670290110 // Journal of Advanced Transportation. – 1995.
- 12. Assessment Framework / Infr2gastructure Australia's : [website]. - 2021. - URL: https://www.infrastructureaustralia. gov.au/publications/assessment-framework.
- 13. Methodology Manual for the Federal Transport Infrastructure Plan 2030 / Ministry of Transport and Digital Infrastructure. – Germany, 2015. - URL: https://bmdv.bund.de/SharedDocs/EN/ Documents/G/federal-transport-infrastructure-plan-2030-en. pdf? blob=publicationFile.
- 14. The green book central government guidance on appraisaland evaluation / HM Treasury and Government Finance Function. -London, 2013. - URL: https://www.gov.uk/government/ publications/the-green-book-appraisal-and-evaluation-incentral-government.
- 15. Decision Support System for Sustainable Transport Development / J. Więckowski, J. Wątróbski, B. Paradowski, B. Kizielewicz, A. Shekhovtsov, W. Sałabun // Communications in Computer and Information Science : Conference proceedings of the 29th International Conference "Neural Information Processing" ICONIP 2022, Virtual Event, Singapore, November 22-26, 2022 / Editors: M. Tanveer, S. Agarwal, S. Ozawa, A. Ekbal, A. Jatowt, - Singapore: Springer, 2023. -Vol. 1793. - Pp. 389-397. - URL: https://link.springer.com/cha pter/10.1007/978-981-99-1645-0 32.
- 16. Intelligent Engineering Construction / G. Xu, D. Wang // Introduction to Intelligent Construction Technology of Transportation Infrastructure. Springer Tracts in Civil Engineering. - Cham: Springer, 2023. - URL: https://doi. org/10.1007/978-3-031-13433-3 6.
- 17. Public Private Partnership for Transport Infrastructure Investment: Critical Success Factors and Lessons Learnt from Projects in the Context of Developing Countries / T. Nguyen, L. Hallo, I. Gunawan, Nguyen // Lecture Notes in Civil

Engineering "Emerging Technologies and Applications for Green Infrastructure" CIGOS 2021, Singapore / Editors: C. Ha-

Minh, A. M. Tang, T. O. Bui, X. H. Vu, D. V. K. Huynh. - Singapore:

- 1. Kievsky, L. V. Dorozhno-mostovoe stroitel'stvo v slozhivshejsya gorodskoj srede [Road and bridge construction in the current urban environment] / L. V. Kievsky, I. L. Kievsky // Promyshlennoe i grazhdanskoe stroitel'stvo [Industrial and civil engineering]. - 2009. - No. 4. - Pp. 3-6.
- 2. Gradostroitel'nyi kodeks Rossiiskoi Federatsii (s izmeneniyami na 13 iyunya 2023 goda) [Urban Planning Code of the Russian Federation (as amended on June 13, 2023)]: prinyat Gosudarstvennoj Dumoj 22 dekabrya 2004 goda [adopted by the State Duma on 22 December 2004] : odobren Sovetom Federatsii 24 dekabrya 2004 goda [Approved by the Federation Council on December 24, 2004]. - Moscow, 2004.
- 3. Vlasov, D. N. K voprosu opredeleniya kachestva transportnogo obsluzhivaniya pri razrabotke dokumentatsii po planirovke territorii [On the issue of determining the quality of transport services in the development of documentation on the layout of the territory] / D. N. Vlasov, I. N. Lobacheva // Sovremennye problemy nauki i obrazovaniya [Modern problems of science and education]. - 2013. - No. 6. - P. 47.
- 4. Ob utverzhdenii Polozheniya o sostave, porvadke podgotovki, soglasovaniya i predstavleniya na utverzhdenie proektov planirovki territorij v gorode Moskve [On approval of the Regulations on the composition, procedure for the preparation, coordination and submission for approval of projects for the planning of territories in the city of Moscow]: Postanovlenie Pravitel'stva Moskvy ot 6 aprelya 2010 goda № 270-PP [Decree of the Government of Moscow dated April 6, 2010 No. 270-PP] / ZAO «Kodeks» [CJSC "Codex"]. – Moscow, 2010. – URL: https://docs.cntd.ru/document/3717744.
- 5. Surin, G. D. Informatsionno-analiticheskij instrument dlya monitoringa transportnoj infrastruktury v gorode Moskve [Information and analytical tool for monitoring transport infrastructure in Moscow] / G. D. Surin, V. D. Demin, D. L. Makarov. - DOI 10.33622/0869-7019.2023.11.26-30 // Promyshlennoe i grazhdanskoe stroitel'stvo [Industrial and civil engineering]. - 2023. - No. 11. - Pp. 26-30.
- 6. Surin, G. D. Metodologicheskie podkhody formirovaniya perechnej ob"ektov zastrojki i ob"ektov transportnoj infrastruktury na osnove gradostroitel'nogo analiza ikh sovmestnogo vliyaniya [Methodological approaches to the formation of lists of building sites and transport infrastructure facilities based on urban planning analysis of their combined impact] / G. D. Surin, V. D. Demin, D. L. Makarov // Stroitel'stvo i arkhitektura [Construction and architecture]. - 2023. - Vol. 11, No. 4. – Pp. 61–67.
- 7. Ob Adresnoj investitsionnoj programme goroda Moskvy na 2023-2026 gody [On the Targeted Investment Program of the City of Moscow for 2023-2026]: Postanovlenie pravitel'stva Moskvy ot 10 oktyabrya 2023 goda № 1930-PP [Decree of the Government of Moscow dated October 10, 2023 No. 1930-PP] / AO «Kodeks»; Vestnik Moskvy [Codex JSC; Bulletin of Moscow]. - 11/14/2023. - Vol. 1, No. 62.
- 8. Kievsky, L. V. Teoriya renovatsii [Theory of renovation] / L. V. Kievsky, I. L. Kievsky. - Moscow: Stolitsa Publ., 2023. -
- 9. Kievskiy I. L. Upravlenie i koordinatsiya krupnomasshtabnymi proektami rassredotochennogo stroitel'stva v gorode Moskve na primere Programmy renovatsii [Management and coordination of large-scale dispersed construction projects

СТРОИТЕЛЬНОЕ ПРОИЗВОДСТВО № 4 (52)'2024

Springer, 2022. - Vol. 203. - Pp. 1545-1553. - URL: https://doi. org/10.1007/978-981-16-7160-9 156.

- in Moscow on the example of a renovation program] / L. V. Kievskiy // Renovatsiya. Krupnomasshtabnyj gorodskoj proekt rassredotochennogo stroitel'stva: monografiya o nauchno-metodicheskikh podkhodakh i nachale realizatsii programmy [Renovation. A large-scale urban project of dispersed construction: a monograph on scientific and methodological approaches and the beginning of the program implementation] / Edited by I. L. Kievsky. - Moscow: Russian School, 2018. - Pp. 11-33.
- 10. Ob utverzhdenii Polozheniya o Departamente gradostroitel'noj politiki goroda Moskvy (v redaktsii postanovlenij Pravitel'stva Moskvy ot 18 dekabrya 2018 g. № 1582-PP [On Approval of the Regulations on the Department of Urban Planning Policy of the City of Moscow (as amended by Resolutions of the Government of Moscow dated December 18, 2018 No. 1582-PP]: Postanovlenie Pravitel'stva Moskvy ot 31 marta 2011 goda № 99-PP [Resolution of the Government of Moscow dated March 31, 2011 No. 99-PP] / AO «Kodeks» [Codex JSC]. -Moscow, 2011.
- 11. Tabucanon, M. T. Multiple criteria evaluation of transportation system improvement projects: The case of korea / M. T. Tabucanon, H.-M. Lee. - DOI https://doi.org/10.1002/ atr.5670290110 // Journal of Advanced Transportation. - 1995.
- 12. Assessment Framework / Infr2qastructure Australia's : [website]. - 2021. - URL: https://www.infrastructureaustralia. gov.au/publications/assessment-framework.
- 13. Methodology Manual for the Federal Transport Infrastructure Plan 2030 / Ministry of Transport and Digital Infrastructure. -Germany, 2015. - URL: https://bmdv.bund.de/SharedDocs/EN/ Documents/G/federal-transport-infrastructure-plan-2030-en. pdf? blob=publicationFile.
- 14. The green book central government guidance on appraisaland evaluation / HM Treasury and Government Finance Function. -London, 2013. - URL: https://www.gov.uk/government/ publications/the-green-book-appraisal-and-evaluation-incentral-government.
- 15. Decision Support System for Sustainable Transport Development / J. Więckowski, J. Wątróbski, B. Paradowski, B. Kizielewicz, A. Shekhovtsov, W. Sałabun // Communications in Computer and Information Science : Conference proceedings of the 29th International Conference "Neural Information Processing" ICONIP 2022, Virtual Event, Singapore, November 22-26, 2022 / Editors: M. Tanveer, S. Agarwal, S. Ozawa, A. Ekbal, A. Jatowt. - Singapore: Springer, 2023. -Vol. 1793. - Pp. 389-397. - URL: https://link.springer.com/cha pter/10.1007/978-981-99-1645-0 32.
- 16. Intelligent Engineering Construction / G. Xu, D. Wang // Introduction to Intelligent Construction Technology of Transportation Infrastructure. Springer Tracts in Civil Engineering. - Cham: Springer, 2023. - URL: https://doi. org/10.1007/978-3-031-13433-3 6.
- 17. Public Private Partnership for Transport Infrastructure Investment: Critical Success Factors and Lessons Learnt from Projects in the Context of Developing Countries / T. Nguyen, L. Hallo, I. Gunawan, Nguyen // Lecture Notes in Civil Engineering "Emerging Technologies and Applications for Green Infrastructure" CIGOS 2021, Singapore / Editors: C. Ha-Minh, A. M. Tang, T. Q. Bui, X. H. Vu, D. V. K. Huynh. - Singapore: Springer, 2022. - Vol. 203. - Pp. 1545-1553. - URL: https://doi. org/10.1007/978-981-16-7160-9 156.

Моделирование системы контроля качества инженерных систем при возведении объектов высотного строительства

Modeling of Quality Control Systems of Engineering Systems in the Construction of High-Rise Buildings

Олейник Павел Павлович

Доктор технических наук, профессор, профессор кафедры «Технологии и организация строительного производства», ФГБОУ ВО «Национальный исследовательский Московский государственный строительный университет» (НИУ МГСУ), Россия, 129337, Москва, Ярославское шоссе, 26, cniomtp@mail.ru

Oleynik Pavel Pavlovich

Doctor of Technical Sciences, Professor, Professor of the Department of Technologies and Organization of Construction Production, National Research Moscow State University of Civil Engineering (NRU MGSU), Russia, 129337, Moscow, Yaroslavskoe shosse, 26, cniomtp@mail.ru

Абас Марина Хабиб

Аспирантка кафедры «Технологии и организация строительного производства», ФГБОУ ВО «Национальный исследовательский Московский государственный строительный университет» (НИУ МГСУ), Россия, 129337, Москва, Ярославское шоссе, 26, marina.abbas1@outlook.com

Abas Maryna

Postgraduate student of the Department of Technologies and Organization of Construction Production, National Research Moscow State University of Civil Engineering (NRU MGSU), Russia, 129337, Moscow, Yaroslavskoe shosse, 26, marina.abbas1@outlook.com

Аннотация. Обеспечение качества строительства является одной из приоритетных задач в современной строительной отрасли. Данная проблема приобретает особую значимость при строительстве высотных зданий, где любое отклонение от установленных норм и стандартов может привести к серьёзным последствиям, включая снижение надёжности конструкции и инженерных систем, увеличение сроков реализации строительного объекта и финансовых затрат. Успешное решение этой задачи невозможно без внедрения эффективного качественного строительного контроля, охватывающего все этапы жизненного цикла объекта.

В данной работе уделено внимание вопросам повышения качества инженерных систем высотных зданий. Исследование охватывает основные этапы жизненного цикла объектов: про-

Abstract. Ensuring construction quality is one of the top priorities in the modern construction industry. This challenge is especially critical in the construction of high-rise buildings, where deviations from established norms and standards can result in significant issues, such as decreased reliability of structures and engineering systems, delays in project completion, and higher financial expenditures.

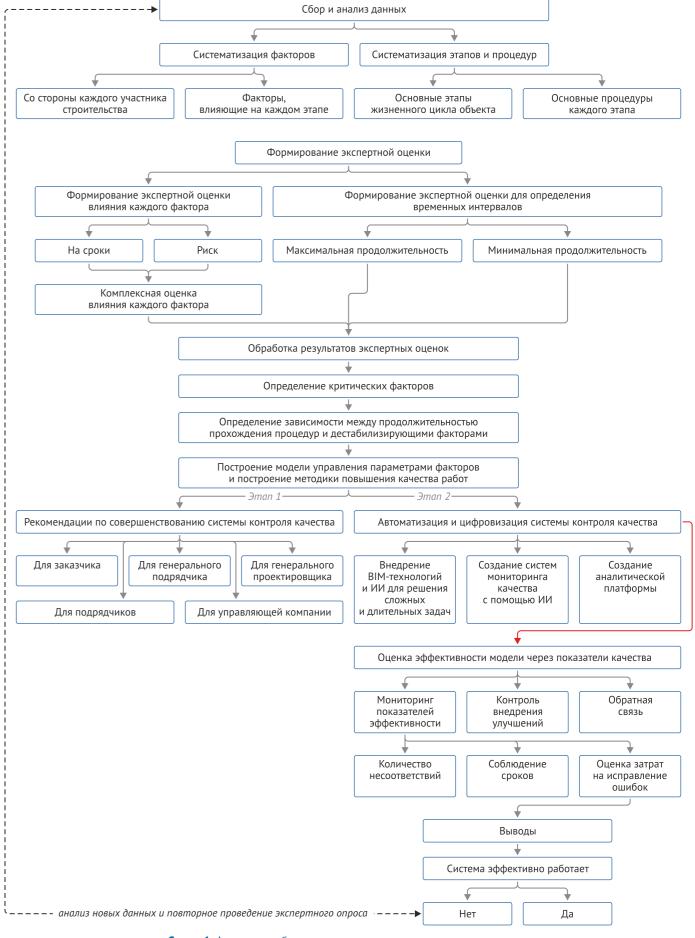
This study focuses on improving the quality of engineering systems in high-rise buildings. The research covers the main stages of an object's lifecycle: pre-design and design preparation, installation of engineering systems, commissioning, and their op-

Введение

Главная цель контроля качества — предупреждение, выявление и своевременное устранение рисков, исключение или сокращение которых во многом зависит от качества выполнения монтажных работ [1]. С учётом индивидуального подхода к проектированию и строительству высотных зданий, существует острая необходимость в разработке дополнительных требований, предъявляемых к системе контроля качества. Эти требования должны быть направлены на повышение надёжности и долговечности инженерных систем, начиная с этапа их проектирования и заканчивая вводом в эксплуатацию [2–3]. Научная гипотеза исследования состоит в том, что повышение качества смонтированных и готовых к эксплуатации инженер-

ектную подготовку, монтаж инженерных систем, проведение пуско-наладочных работ и их ввод в эксплуатацию, а также процедуры, относящиеся к каждому из этих этапов. По итогам проведённого исследования будет разработана методика управления параметрами качества, направленная на обеспечение высокого качества монтажа и подготовки инженерных систем к эксплуатации, а также на сокращение сроков выполнения работ за счёт оптимизации процессов проектирования, монтажа и ввода в эксплуатацию инженерных систем, а также повышения уровня взаимодействия между всеми участниками строительного производства.

Ключевые слова: контроль качества, инженерные системы, высотные здания, методика управления качеством, жизненный цикл объекта. повышение качества.


erational launch

As a result of the study, a quality management methodology will be developed, aimed at ensuring high-quality installation and preparation of engineering systems for operation. This methodology will also contribute to reducing project timelines by optimizing the processes of design, installation, and commissioning of engineering systems, as well as enhancing coordination among all participants in the construction process.

Keywords: quality control, engineering systems, high-rise buildings, quality management methodology, object life cycle, quality improvement

ных систем достигается путём анализа основных этапов и процедур проектирования, монтажа, пуско-наладочных работ и эксплуатации инженерных систем, а также изучения факторов на всех этапах жизненного цикла высотных зданий. Для обеспечения, поддержания и улучшения качества процессов была разработана методика управления параметрами, обеспечивающая качество работ при проектировании, СМР, ПНР и вводе в эксплуатацию инженерных систем и сокращение сроков прохождения процедур каждого этапа со стороны всех участников строительства на основе установленных положений и зависимостей, учитывающих комплексное воздействие влияющих факторов и особенности высотных зданий. Алгоритм работ приведён ниже на схеме 1.

© Олейник П. П., Абас М. Х., 2024, Строительное производство № 4'2024

Схема 1. Алгоритм работ для повышения качества системы контроля **Fig. 1.** Workflow algorithm for improving the quality of the control system

Ключевыми аспектами исследования являются: — исследование временных затрат;

 моделирование воздействия различных факторов на продолжительность работ;

Nº пп.	Процедура	Минимальная продолжительность, мес.	Максимальная продолжительность, мес.
1	Разработка задания на проектирование	0,5	1,5
2	Выбор проектной организации и заключение договора на выполнение проектных работ по инженерным системам	1	3
3	Разработка проектной документации по инженерным системам	2,5	6
4	Прохождение проектной документации государственной или негосударственной экспертизы	2	5
5	Получение разрешения на строительство	0,5	3

Таб. 1. Анализ основных процедур проектной подготовки **Tab. 1.** Analysis of the main project preparation procedures

№ пп.	Процедура	Минимальная продолжительность, мес.	Максимальная продолжительность, мес.
1	Согласование и подписание сметы и договора на производство работ и поставку материалов	0,5	3
2	Поставка оборудования на объект, подготовительные работы	2	5
3	Монтаж инженерных систем и оборудования, подготовка и передача ИД	9	16
4	Проведение индивидуальных испытаний оборудования, проверка работоспособности системы под проектной нагрузкой и подготовка необходимых документов	2,5	5
5	Проведение комплексных испытаний	2	5
6	Комплектация итогового комплекта ИД (с учётом всех изменений), инструкции по эксплуатации инженерных систем, гарантийные документы, исполнительная документация	2	4,5

Таб. 2. Анализ основных процедур при монтаже, ПНР инженерных систем **Таb. 2.** Basic procedures for installation, commissioning of engineering systems

№ пп.	Процедура	Минимальная продолжительность, мес.	Максимальная продолжительность, мес.
1	Приём объекта заказчиком	2	4
2	Подписание актов о подключении объекта капитального строительства к сетям инженерно-технического обеспечения	0,5	3
3	Проверка комиссией Мосгостройнадзора соответствия смонтированных и подготовленных к эксплуатации инженерных систем проектной документации	0,5	3
4	Получение 3ОС	0,5	3
5	Получение разрешения на эксплуатацию здания	2	4
6	Техническая инвентаризация и регистрация прав собственности	0,5	4

Таб. 3. Анализ процедур ввода объекта в эксплуатацию **Таb. 3.** Analysis of the procedures for commissioning the facility

 создание модели, которая будет отслеживать продолжительность процедур и влияние факторов на эти процессы.

Материалы и методы

Методы исследования: группировка, обобщение и теоретический анализ основных этапов и процедур проектирования, монтажа, проведение пуско-наладочных работ и эксплуатация инженерных систем. Кроме этого, были использованы основные научные подходы: системный и моделирование.

Результаты

В результате проведённых исследований [4–12] выполнены анализ основных этапов жизненного цикла объекта при реализации инженерных систем и анализ процедур каждого этапа. Граничные интервалы продолжительности выполнения процедур (максимальная и минимальная продолжительность) принимаются согласно полученным данным в результате обработки результатов экспертного опроса. В ходе обработки результатов применялся коэффициент конкордации Кендалла, который позволяет определить уровень согласованности экспертных оценок. В данном исследовании коэффициент составил 0.7, что свидетельствует о высокой согласованности мне-

ний экспертов. Результаты анализа приведены в таблицах 1, 2, 3.

Для установления математической зависимости между экспертной балльной оценкой факторов и фактическим отклонением планируемой продолжительности применяется метод множественного регрессионного анализа. В данном случае факторы выступают в роли независимых переменных, которые совместно влияют на зависимую переменную — увеличение продолжительности выполнения работ.

Основная гипотеза заключается в том, что дестабилизирующие факторы оказывают существенное влияние на продолжительность этапов работ, при этом степень их влияния зависит от характера каждого конкретного фактора.

Модель анализа – линейная регрессионная модель:

$$T = T0 + \Delta T$$

$$T = T0 + \beta 1 \cdot F1 + \beta 2 \cdot F2 + ... + \beta n \cdot Fn + \varepsilon$$
,

где T — продолжительность процедуры (зависимая переменная);

F1, F2, Fn — значения факторов (независимые переменные);

T0 – базовая (исходная) продолжительность;

 $\beta 1$, $\beta 2$, βn — коэффициенты регрессии, отражающие влияние факторов;

 ε — случайная ошибка.

Для построения модели управления параметрами факторов авторы предлагают следующие шаги:

- Классификация факторов, влияющих на качество работ, деление факторов на группы:
- контролируемые факторы, на которые можно повлиять (например, квалификация персонала);
- неконтролируемые факторы, которые невозможно изменить.
- Определение комплексной оценки влияния каждого фактора.

Линейная комбинация:

$$Ci = (Ti \times W_T) + (Ri \times W_R),$$

где Ci — комплексная оценка влияния i-го фактора;

Ti – оценка i-го фактора по критерию «Сроки»;

Ri – оценка i-го фактора по критерию «Риски»;

 W_T — весовой коэффициент для критерия «Сроки»; W_R — весовой коэффициент для критерия «Риски».

Данная формула представляет структурированный и обоснованный способ оценки совокупного влияния различных факторов на продолжительность этапа проекта, учитывая их воздействие на сроки и риски.

 Установка целевых параметров: определение оптимальных значений факторов для минимизации продолжительности процедур и повышения качества.

Пример анализа влияния дестабилизирующих факторов

Если дестабилизирующие факторы включают, например, качество проектной документации (F1), контроль соблюдения графиков работ подрядчиками (F2), квалификацию персонала (F3), то управлять параметрами факторов можно следующим образом:

• Оценка влияния факторов: для фактора F1 — влияние на сроки (T1) = 4, влияние на риски (R1) = 3.

Весовые коэффициенты критериев: WT = 0.6 (вес критерия «Сроки»), WR = 0.4 (вес критерия «Риски»).

Комплексная оценка влияния фактора F:

$$C = (T \times W_T) + (R \times W_R).$$

Например, для фактора F1: $C1 = (4 \times 0.6) + (3 \times 0.4) = 2.4 + 1.2 = 3.6$.

• Построение модели влияния факторов.

После расчёта коэффициентов влияния методом наименьших квадратов модель изменения продолжительности этапа выглядит так:

$$\Delta T = 2.5 \cdot F1 + 3.2 \cdot F2 + 1.8 \cdot F3 + \varepsilon$$
,

где ϵ – случайная погрешность.

Подставляя значения: F1 = 3,6, F2 = 3, F3 = 2, получаем ΔT — изменение продолжительности процедур:

СПИСОК ЛИТЕРАТУРЫ

- 1. Олейник, П. П. Основные факторы, влияющие на качество работ при монтаже инженерных систем высотных зданий / П. П. Олейник, М. Х. Абас // Строительное производство. 2023. № 4. С. 21–25.
- 2. Крюков, К. М. Особенности проблематики качества проектирования и строительства высотных зданий / К. М. Крюков, М. Аль-Тулаихи // Инженерный вестник Дона. 2020. № 3 (63).
- 3. Еремеев, П. Г. Особенности проектирования уникальных большепролётных зданий и сооружений / П. Г. Еремеев //

СТРОИТЕЛЬНОЕ ПРОИЗВОДСТВО № 4 (52)'2024

 $\Delta T = (2.5 \times 3.6) + (3.2 \times 3) + (1.8 \times 2) = 22.2$ (дня).

- Управление параметрами факторов.
- Чтобы минимизировать продолжительность прохождения процедур (ΔT) и повысить качество процедур, предлагается:
- ✓ Оптимизировать значения факторов, что позволит минимизировать отклонения и повысить качество работ.

Например, качество проектной документации $F1 \ge 4$. Дополнительные меры для оптимизации:

- внедрение автоматизированных систем проверки (ВІМ-моделирование, цифровая экспертиза);
- многоэтапная проверка документации перед утверждением;
- привлечение независимых экспертов.
- ✓ Задать минимально допустимые значения факторов.

 $F1 \ge 4$ — гарантия корректности проектной документации за счёт многоэтапной экспертизы, автоматизированных проверок и независимого аудита.

 $F3 \ge 3.5$ — требования к персоналу: минимальный уровень — специалисты категории В (опыт ≥ 3 лет, наличие профильного образования); рекомендуемый уровень — специалисты категории А (опыт ≥ 5 лет, участие в аналогичных проектах, наличие сертификации).

 \checkmark Внедрить систему мониторинга и управленческих решений.

Если контроль соблюдения графиков подрядчиками F2 < 3, необходимо:

- провести анализ причин задержек;
- усилить контроль: внедрить ежедневный мониторинг выполнения работ;
- скорректировать график: перераспределить ресурсы, активизировать параллельные работы, увеличить сменность при необходимости;
- применить финансовые меры: ввести штрафы за срыв сроков.

С целью оценки эффективности системы контроля в дальнейших исследованиях авторы предлагают моделировать варианты корректировки выполнения процедур при воздействии значимых факторов со стороны всех участников строительства с учётом автоматизации и цифровизации системы контроля качества.

Заключение

Полученные результаты позволяют сформулировать Положение о методике управления качеством, спрогнозировать эффективность системы контроля качества при проектировании, монтаже, проведении пуско-наладочных работ и вводе в эксплуатацию инженерных систем и предложить рекомендации в виде определённых мероприятий по совершенствованию системы контроля качества для каждого участника строительного производства.

Строительная механика и расчёт сооружений. – 2005. – № 1.

- 4. Lapidus, A. Systemic integrated method for assessing factors affecting construction timelines / A. Lapidus, I. Abramov. DOI https://doi.org/10.1051/matecconf/201819305033 // MATEC Web of Conferences of International Scientific Conference "Environmental Science for Construction Industry", ESCI-2018. 2018. Vol. 193. Art. 05033.
- 5. Олейник, П. П. Организация строительного производства : научное издание / П. П. Олейник. Москва : Издательство ACB, 2010. 576 с.
- 6. Поляк, П. П. Деятельность генподрядчика в структуре ин-

- формационной модели: опыт строительного холдинга ГВСУ «Центр» / П. П. Поляк // Жилищное строительство. 2018. № 10. С. 10 13.
- 7. Особенности проектирования высотных зданий / Н. А. Вернин, А. А. Грузков, В. Д. Матвиенко, П. Е. Солянник // Инновации и инвестиции. 2020. № 11. С. 205 208.
- 8. Рыльцева, Ю. А. Особенности проектных решений внутренних систем водоснабжения высотных зданий / Ю. А. Рыльцева // Вестник МГСУ. 2022. № 11. С. 1499–1512.
- Казанцев, И. М. Оценка эффективности проекта водоснабжения группы высотных жилых зданий / И. М. Казанцев,
 А. В. Путько // Новые идеи нового века : материалы Международной научной конференции ФАД ТОГУ, Хабаровск, 2014 ; Факультет архитектуры и дизайна Тихоокеанского государственного университета. 2014. Т. 3. С. 283–286.

REFERENCES

- Olejnik, P. P. Osnovnye faktory, vliyayushhie na kachestvo rabot pri montazhe inzhenernykh sistem vysotnykh zdanij [Main factors affecting the quality of work during installation of engineering systems of high-rise buildings] / P. P. Olejnik, M. X. Abas // Stroitelnoe proizvodstvo [Construction production]. – 2023. – No. 4. – Pp. 21–25.
- Kriukov, K. M. Osobennosti problematiki kachestva proektirovaniya i stroitelstva vysotnykh zdanij [Peculiarities of quality problems in the design and construction of high-rise buildings] / K. M. Kriukov, M. Al-Tulaikhi // Inzhenernyj vestnik Dona [Engineering Bulletin of the Don]. – 2020. – No. 3 (63).
- Eremeev, P. G. Osobennosti proektirovaniya unikalnykh bolsheprolyotnykh zdanij i sooruzhenij [Design features of unique over-span buildings and structures] / P. G. Eremeev // Stroitelnaya mekhanika i raschyot sooruzhenij [Construction mechanics and calculation of structures]. – 2005. – No. 1.
- Lapidus, A. Systemic integrated method for assessing factors affecting construction timelines / A. Lapidus, I. Abramov. – DOI https://doi.org/10.1051/matecconf/201819305033 // MATEC Web of Conferences of International Scientific Conference "Environmental Science for Construction Industry", ESCI-2018. – 2018. – Vol. 193. – Art. 05033.
- Oleinik, P. P. Organizatsiya stroitelnogo proizvodstva [Organization of construction production] / P. P. Oleinik. – Moscow: Izdatelstvo ASV [Publishing House of the Association of Construction Universities], 2010. – 572 p.
- Polyak, P. P. Deyatel'nost' genpodryadchika v strukture informatsionnoj modeli: opyt stroitel'nogo kholdinga GVSU «TSentr» [Activity of general contractor in the structure of information model: experience of construction holding GVSU «Center»] / P. P. Polyak // Zhilishchnoe stroitel'stvo [Housing Construction]. –2018. – No. 10. – Pp. 10–13.
- Osobennosti proektirovaniya vysotnykh zdanij [Design features of high-rise buildings] / N. A. Vernin, A. A. Gruzkov,
 V. D. Matvienko, P. E. Solyannik // Innovatsii i investitsii [Innovation and investment]. 2020. No. 11. Pp. 205 208.

- Applied Predictive Process Monitoring and Hyper Parameter Optimization in Camunda / N. Bartmann, S. Hill, C. Corea, C. Drodt, P. Delfmann. DOI 10.1007/978-3-030-79108-7_15 // Lecture Notes in Business Information Processing "Intelligent Information Systems", CAiSE 2021, June 2021. 2021. Vol. 439. Pp.129–136.
- 11. Магай, А. А. Значение специальных технических условий для проектирования высотных зданий / А. А. Магай, В. С. Зырянов, Е. Ю. Шалыгина // Жилищное строительство. 2015. № 11. С. 17–20.
- 12. Потенциал эффективности комплексной оценки качества строительства от этапа проектирования до ввода объекта в эксплуатацию / Т. Ю. Савушкина, В. С. Зенов, А. С. Зеленцов, А. А. Лапидус // Инженерный вестник Дона. 2019. № 1 (52).
- 8. Rylceva, Y. A. Osobennosti proektnykh reshenij vnutrennikh sistem vodosnabzheniya vysotnykh zdanij [Features of design solutions for internal water supply systems of high-rise buildings] / Y. A. Rylceva // Vestnik MGSU [Bulletin of MGSU]. 2022. No. 11. Pp. 1499–1512.
- Kazancev, I. M. Otsenka ehffektivnosti proekta vodosnabzheniya gruppy vysotnykh zhilykh zdanij [Evaluation of the effectiveness of the water supply project for a group of high-rise residential buildings] / I. M. Kazancev, A. V. Putko // Novye idei novogo veka: materialy Mezhdunarodnoj nauchnoj konferentsii FAD TOGU, Khabarovsk, 2014 [New Ideas of the New Century: proceedings of the International Scientific Conference of the Faculty of Architecture and Design of the Khabarovsk State University, Khabarovsk, 2014]; Fakul'tet arkhitektury i dizajna Tikhookeanskogo gosudarstvennogo universiteta [Faculty of Architecture and Design of the Pacific State University]. – 2014. – Vol. 3. – Pp. 283–286.
- Applied Predictive Process Monitoring and Hyper Parameter Optimization in Camunda / N. Bartmann, S. Hill, C. Corea, C. Drodt, P. Delfmann. DOI 10.1007/978-3-030-79108-7_15 // Lecture Notes in Business Information Processing "Intelligent Information Systems", CAiSE 2021, June 2021. 2021. Vol. 439. Pp.129–136.
- Magaj, A. A. Znachenie specil'nykh tekhnicheskikh uslovij dlya proektirovaniya vysotnykh zdanij [The importance of special technical conditions for the design of high-rise buildings] / A. A. Magaj, V. S. Zyryanov, E. Yu. Shalygina // Zhilishhnoe stroitelstvo [Housing construction]. 2015. No. 11. Pp. 17–20.
- 12. Potentsial ehffektivnosti kompleksnoj otsenki kachestva stroitel'stva ot ehtapa proektirovaniya do vvoda ob"ekta v ehkspluatatsiyu [The effectiveness potential of a comprehensive assessment of the quality of construction from the design stage to the commissioning of the facility] / T. Yu. Savushkina, V. S. Zenov, A. S. Zelenczov, A. A. Lapidus // Inzhenernyj vestnik Dona [Engineering Bulletin of the Don]. 2019. No. 1 (52).

DOI: 10.54950/26585340_2024_4_94

Самоорганизованная критичность строительных систем

Self-Organized Criticality of Construction Systems

Лапидус Азарий Абрамович

УДК 69.05

Доктор технических наук, профессор, заведующий кафедрой «Технологии и организация строительного производства», ФГБОУ ВО «Национальный исследовательский Московский государственный строительный университет» (НИУ МГСУ), Россия, 129337, Москва, Ярославское шоссе, 26, lapidusaa@mgsu.ru

Lapidus Azariy Abramovich

Doctor of Technical Sciences, Professor, Head of the Department of Technologies and Organization of Construction Production, National Research Moscow State University of Civil Engineering (NRU MGSU), Russia, 129337, Moscow, Yaroslavskoe shosse, 26, lapidusaa@mgsu.ru

Кандидат технических наук, доцент кафедры технологии и организации строительства, ФГБОУ ВО «Новосибирский государственный архитектурно-строительный университет (Сибстрин)» (НГАСУ), Россия, 630008, Новосибирск, улица Ленинградская, 113, oleq mik@mail.ru

Mikhalchenko Oleg Yurievich

Candidate of Engineering Sciences, Associate Professor of the Department of Technology and Organization of Construction, Novosibirsk State University of Architecture and Civil Engineering (Sibstrin), Russia, 630008, Novosibirsk, Leningradskaya ulitsa, 113, oleg mik@mail.ru

Аннотация. В статье рассматривается поведение систем реализации программ строительства объектов капитального строительства с позиции теории самоорганизованной критичности. Иерархическая и динамическая природа строительных систем требует от них адаптации к изменениям внутренней и внешней среды. Строительные системы являются сложными открытыми системами, в рамках которых происходят взаимодействия различных подсистем, таких как проектирование, финансирование, материально-техническое обеспечение, управление строительными работами и др.

Автором анализируется поведение строительной системы в условиях стохастического строительного производства, что позволяет выявить признаки хаотичности и самоорганизованной критичности при отклонениях на различных уровнях иерархии такой системы. Это поведение характеризуется масштабной инвариантностью, описываемой степенными законами, и на-

Abstract. The article examines the behavior of construction program implementation systems for capital construction projects from the perspective of self-organized criticality theory. The hierarchical and dynamic nature of construction systems requires them to adapt to changes in both the internal and external environment. Construction systems are complex open systems, within which interactions between various subsystems, such as design, financing, material and technical support, construction management, and others, take place.

The author analyzes the behavior of construction systems in the context of stochastic construction production, which reveals signs of chaos and self-organized criticality when deviations occur at various levels of the system's hierarchy. This behavior is characterized by scale invariance, described by power laws, and личием розового шума, который указывает на долгосрочные корреляции между событиями на разных временных шкалах. Самоорганизованная критичность в строительных системах проявляется в виде резких изменений, таких как задержка сроков или перерасход бюджета, вызванных незначительными отклонениями. Также в статье отмечено наличие в строительных системах точек бифуркации, т. е. таких точек, при приближении к которым малые внешние воздействия могут привести к крупным изменениям в системе.

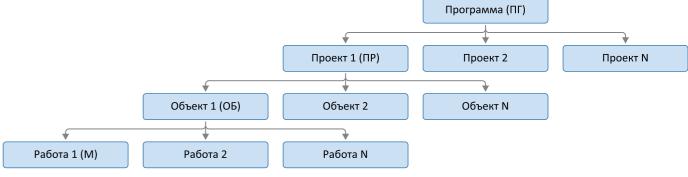
СТРОИТЕЛЬНОЕ ПРОИЗВОДСТВО № 4 (52)'2024

Отмечено, что понимание этих характеристик открывает новые возможности для управления рисками в строительных проектах, позволяя оптимизировать ресурсы и адаптироваться к изменяющимся условиям.

Ключевые слова: самоорганизованная критичность, управление рисками, бифуркации, программы строительства, гистограмма отклонений.

the presence of pink noise, which indicates long-term correlations between events at different time scales. Self-organized criticality in construction systems manifests as sudden changes, such as delays or budget overruns, triggered by minor deviations. The article also notes the presence of bifurcation points in construction systems, points at which small external impacts can lead to significant changes in the system.

It is emphasized that understanding these characteristics opens new opportunities for risk management in construction projects, allowing for resource optimization and adaptation to changing conditions.


Keywords: self-organized criticality, risk management, bifurcations, construction programs, deviation histogram.

Введение

Система реализации программ строительства объектов капитального строительства представляет собой сложный комплекс взаимосвязанных процессов, который функционирует в пространстве и времени с целью обеспечения выполнения заданий в установленные сроки и с минимально возможным уровнем затрат. Автором она определяется как иерархическая структура (рисунок 1). Количество проектов в программе, объектов в проекте и работ в объекте может быть любое, что затрудняет анализ таких систем. Однако такое понимание системы позволяет рассматривать её с позиции системного анализа, выяв-

ляя основные закономерности функционирования [1–5].

Иерархическая природа строительной системы обусловлена сложностью строительного производства и необходимостью координации множества процессов, ресурсов и участников. На верхнем уровне иерархии находятся стратегические цели программы, такие как завершение строительства в рамках бюджетных ограничений и соответствие конечного результата установленным требованиям. Средний уровень представлен организационно-управленческими структурами, обеспечивающими разработку планов, распределение ресурсов и мониторинг выполнения работ. На нижнем уровне располагаются

Рис. 1. Иерархическая структура программ строительства объектов капитального строительства **Fig. 1.** Hierarchical structure of construction programs for capital construction projects

операционные процессы, включающие непосредственное выполнение строительных работ, поставку материалов, эксплуатацию техники и взаимодействие между субподрядчиками. Такая структурная организация позволяет системе функционировать в условиях ограниченных ресурсов и высокой неопределённости, обеспечивая баланс между гибкостью и устойчивостью.

Материалы и методы

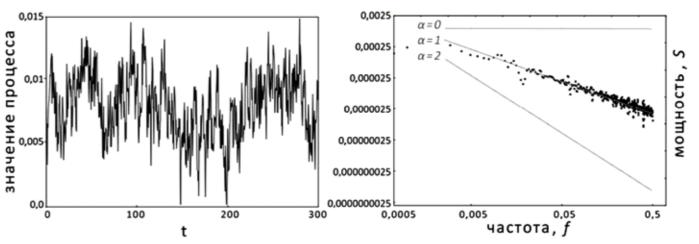
Материалы и методы исследования: теория хаоса, синергетика, теория вероятности, анализ, синтез, моделирование.

Результаты

Ключевой особенностью системы реализации программ строительства является её иерархический и динамический характер. В процессе реализации программы система вынуждена адаптироваться к изменениям внешней среды, таким как колебания цен на строительные материалы, изменения в законодательстве, погодные условия и другие факторы. Это требует внедрения методов адаптивного управления, способных оперативно реагировать на отклонения и корректировать план реализации программы. Кроме того, система реализации программ строительства объектов капитального строительства является сложной открытой системой, находящейся под воздействием множества факторов. В рамках её функционирования происходит взаимодействие между различными подсистемами, такими как проектирование, финансирование, материально-техническое обеспечение и управление строительными работами. Каждый из этих компонентов имеет свои особенности, которые необходимо учитывать при планировании и реализации программы.

Иерархичность системы проявляется не только в организационной структуре, но и в пространственно-временных аспектах её функционирования. На каждом этапе реализации программы происходят пространственные изменения, связанные с развитием строительной площадки, перемещением техники и материалов, а также выполнением конкретных видов работ. Таким образом, пространственно-временная координация становится одним из ключевых факторов успешной реализации программ строительства.

Изучение поведения системы реализации программ строительства объектов капитального строительства в стохастических условиях строительного производства представляет собой сложную задачу, поскольку процесс строительства, как уже было отмечено, включает множество переменных, взаимодействующих друг с другом в условиях неопределённости. Исследуя динамику и особенности поведения этой системы, автор пришёл к выводу, что при возникновении отклонений на различных уровнях иерархии система может проявлять признаки хаоса и ведёт себя как самоорганизованно-критическая система. Такое поведение включает характерные для самоорганизованно-критических систем особенности, включая проявления розового шума [6].


В сложных системах, состоящих из множества взаимосвязанных элементов, где присутствуют причинноследственные связи, часто проявляется феномен самоорганизованной критичности. Этот термин описывает уникальное поведение системы, при котором малозначительные события на микроуровне могут спровоцировать цепную реакцию, распространяющуюся по всей системе и приводящую к существенным изменениям на макроуровне. Природа такого поведения заключается в нелинейности и многоуровневом характере взаимодействий между элементами системы.

Самоорганизованная критичность является ключевым понятием синергетики — науки, изучающей закономерности возникновения упорядоченных структур в системах различной природы. Синергетика как научная область предоставляет инструменты для анализа таких систем. Она изучает переходы от хаоса к порядку, механизмы самоорганизации и условия возникновения критических состояний. Одним из её основоположников является Герман Хакен, который показал, что в сложных системах коллективное поведение может возникать благодаря взаимодействию множества простых элементов [6]. Научные методы синергетики включают использование математического моделирования, теории нелинейной динамики и анализа временных рядов, что позволяет описывать и прогнозировать поведение систем с самоорганизованной критичностью.

Самоорганизованная критичность (SOC, self-organized criticality) - это состояние, при котором система накапливает энергию или напряжение до критического уровня, после чего происходят резкие изменения или сброс напряжения, которые перераспределяют ресурсы внутри системы. Данный феномен наблюдается в различных природных и антропогенных системах, включая землетрясения, экономические кризисы и динамику песчаных дюн. Для системы строительства объектов капитального строительства самоорганизованная критичность проявляется в виде внезапных изменений, таких как срыв сроков сдачи объектов в эксплуатацию, значительное превышение бюджета, перераспределение ресурсов, пересмотр проектных решений и т. д. Например, задержка поставки одного материала может вызвать цепную реакцию изменений в других процессах, приводя к увеличению сроков выполнения программы и перерасходу бюджета.

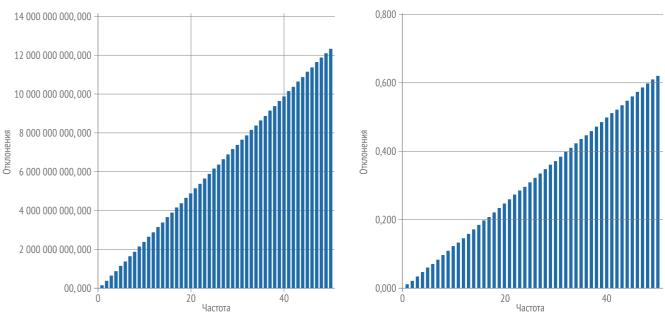
Самоорганизованная критичность проявляется через определённые характеристики, одной из которых является масштабная инвариантность. Это означает, что крупные события в системе следуют тем же закономерностям, что и мелкие, а их частота описывается степенными законами. Например, распределение частот землетрясений или масштабов финансовых кризисов часто подчиняется степенному распределению, что свидетельствует о наличии глубинных закономерностей в поведении системы.

Ещё одной характерной чертой является возникновение розового шума (1/f-шум), который указывает на корреляцию между событиями на разных временных шкалах. Этот тип шума часто наблюдается в системах с самоорганизованной критичностью, таких как процессы в мозге, динамика биржевых индексов или электрическая активность в клетках. Розовый шум представляет собой тип шумового спектра, в котором мощность сигнала обратно пропорциональна частоте. Для определения наличия розового шума и, следовательно, самоорганизующейся критичности, исследуются временные ряды (1, 2). Если на спектральной диаграмме, отображающей зависимость мощности от частоты, выявляется степенной характер зависимости, то показатель степени этой зависимости используется для идентификации ряда (или процесса) как розового шума (рисунок 2).

Рис. 2. Пример розового шума **Fig. 2.** An example of pink noise

$$S \approx \frac{1}{f^a},\tag{1}$$

$$S(x) \approx \frac{1}{x^{1+\beta}}.$$


В контексте строительной системы розовый шум проявляется в распределении отклонений сроков и затрат: малые отклонения происходят в системе часто, в то время как крупные — редко, но их влияние на систему оказывается значительно выше. Анализ гистограмм плотности распределения отклонений продолжительности и затрат на разных уровнях иерархии строительной системы, а также вероятностей их возникновения показывает наличие степенной зависимости (рисунок 3). Иными словами, с увеличением отклонений в продолжительности и/или затратах на разных уровнях системы вероятность их появления уменьшается [3; 4; 7].

Присущие системе реализации программ строительства признаки розового шума свидетельствуют о нелинейной взаимосвязи между элементами системы. Это можно объяснить высокой степенью взаимозависимости процессов, в которой небольшое локальное изменение может привести к значительным системным последствиям. Например, незначительное увеличение времени на

согласование документации может вызвать каскадный эффект, влияющий на другие этапы программы. Такой тип поведения соответствует масштабирующей инвариантности, характерной для самоорганизованно-критических систем, где малые и крупные события описываются одинаковыми закономерностями.

Стоит отметить, что в условиях стохастического строительного производства поведение системы обусловлено не только внутренними свойствами, но и воздействием внешних факторов. Изменения в нормативно-правовой базе, колебания цен на строительные материалы и экономические кризисы добавляют ещё больше неопределённости, усиливая признаки хаотичности. Тем не менее, именно способность системы к самоорганизации позволяет ей адаптироваться к этим изменениям, минимизируя негативные последствия и обеспечивая продолжение реализации программы. Важно понимать, что адаптация системы происходит через последовательность критических состояний, каждое из которых сопровождается перераспределением ресурсов и изменением структуры взаимодействий между элементами.

Ещё одним важным элементом самоорганизованнокритических систем является наличие в них так называемых точек бифуркации [8; 9]. Эти точки можно рассма-

Рис. 3. Пример гистограмм плотности распределения отклонений затрат и продолжительности на уровне «программа» **Fig. 3.** An example of histograms of the distribution density of cost and duration deviations at the "program" level

тривать как критические моменты, в которых система, находясь в состоянии устойчивого равновесия, претерпевает резкое и качественное изменение, при этом даже незначительные внешние воздействия могут вызвать внезапный переход к совершенно новому состоянию. Точки бифуркации в строительных системах могут проявляться не только в отношении временных и финансовых параметров проекта, но и в его организационной структуре. Например, если на определённом этапе реализации проекта изменения в управлении или перераспределении ресурсов приводят к перегрузке системы, то это может стать катастрофическим для всей программы. В результате система может перейти в новое состояние, характеризующееся либо разрушением первоначальной структуры проекта, либо значительными изменениями в его подходах и механизмах.

Точки бифуркации являются важными индикаторами для проектных и строительных команд, так как они позволяют предсказать моменты, когда система может выйти из под контроля. Понимание таких точек и возможность их предсказания являются важным элементом управления рисками в строительных проектах.

Анализ точек бифуркации в строительных системах требует использования методов нелинейной динамики и теории катастроф, которые позволяют моделировать и прогнозировать поведение системы в условиях неопределённости. Это особенно важно для управления рисками и предотвращения кризисных ситуаций в строительных проектах, где высокая степень взаимозависимости элементов может привести к резким изменениям, которые невозможно спрогнозировать при использовании линейных моделей. Такие методы могут помочь предсказать моменты, когда система будет находиться на грани перехода в новое состояние, и принять меры для предотвращения нежелательных последствий.

Исследование бифуркаций и самоорганизованной критичности в строительных системах открывает новые возможности для их оптимизации и управления. При-

СПИСОК ЛИТЕРАТУРЫ

- 1. Гусаков, А. А. Организационно-технологическая надежность строительства / А. А. Гусаков, С. А. Веремеенко, А. В. Гинзбург и др. Москва: SvR-Apryc, 1994. 472 с.
- 2. Гусаков, А. А. Системотехника в строительстве / А. А. Гусаков. Москва : Стройиздат, 1993. 245 с.
- 3. Михальченко, О. Ю. Организационная надёжность планирования строительства объектов: дисс. ... канд. техн. наук: 05.23.08 / Михальченко Олег Юрьевич; Новосибирский государственный архитектурно-строительный университет. Новосибирск: НГАСУ (Сибстрин), 2012. 150 с.
- Лапидус, А. А. Использование метода Монте-Карло для анализа рисков при строительстве объектов капитального строительства / А. А. Лапидус, О. Ю. Михальченко, А. А. Ткач // Строительное производство. – 2024. – № 3. – С. 31 – 36.
- 5. Саати, Т. Аналитическое планирование. Организация си-

менение принципов синергетики позволяет выявить закономерности, которые могут быть использованы для предсказания и предотвращения кризисных ситуаций, повышения устойчивости системы и улучшения эффективности строительства. Однако для успешного применения этих принципов необходимо учитывать многообразие факторов, влияющих на систему, и использовать комплексные методы анализа и прогнозирования, которые позволят предсказать возможные бифуркации и минимизировать их негативные последствия.

Обсуждение

Понимание поведения системы реализации программ строительства объектов капитального строительства в рамках теории самоорганизованной критичности имеет важное практическое значение. Во-первых, оно позволяет лучше прогнозировать риски, связанные с крупномасштабными изменениями в системе. Во-вторых, такие знания способствуют разработке стратегий управления, способных минимизировать влияние негативных факторов и обеспечить устойчивость программы. Например, внедрение динамических моделей планирования и управления, учитывающих возможность возникновения критических состояний, может повысить эффективность использования ресурсов и снизить вероятность крупных отклонений.

Заключение

Изучение системы реализации программ строительства в условиях стохастического производства показало, что поведение этой системы соответствует модели самоорганизованной критичности. Характерные для таких систем признаки, включая наличие точек бифуркации и розового шума, подтверждают наличие нелинейных связей и высокой степени корреляции между элементами системы. Признание этих особенностей открывает новые возможности для управления сложными строительными процессами, позволяя адаптироваться к изменяющимся условиям и снижать риски при реализации строительных проектов.

- стем / Т. Саати, К. Кернс ; пер. с англ. Москва : Радио и связь, 1991. – 224 с.
- Haken, H. Synergetics: An Introduction: Nonequilibrium Phase Transitions and Self-Organization in Physics, Chemistry and Biology. – Berlin: Springer, 1983. – URL: https://doi. org/10.1007/978-3-642-88338-5.
- Лапидус, А. А. Повышение эффективности организационно-технических решений в условиях повышенного риска / А. А. Лапидус, О. Т. Огидан // Components of scientific and technological progress. 2023. № 6. С. 68–73.
- 8. Bak, P. How nature works: The science of self-organized criticality. Copernicus / P. Bak. DOI https://doi.org/10.1007/978-1-4757-5426-1. 1996.
- 9. Bak, P. Self-organized criticality/ P. Bak, C. Tang, K. Wiesenfeld. DOI https://doi.org/10.1103/PhysRevA.38.364 // Physical Review A. 1988. Vol. 38, Iss. 1. Pp. 364–374.

REFERENCES

- Gusakov, A. A. Organizatsionno-tekhnologicheskaya nadezhnost' stroitel'stva [Organizational and technological reliability of construction] / A. A. Gusakov, S. A. Veremenko, A. V. Ginzburg [et al]. – Moscow: SvR-Argus, 1994. – 472 p.
- 2. Gusakov, A. A. Sistemotekhnika v stroitelstve [System engineering in construction] / A. A. Gusakov. Moscow : Stroyizdat, 1993. 245 p.
- 3. Mikhalchenko, O. Yu. Organizatsionnaya nadezhnost'
- planirovaniya stroitel'stva ob'ektov : kand. tekhn. nauk [Organizational reliability of facility construction planning : dis. ... Candidate of Technical Sciences : 05.23.08] / Mikhalchenko Oleg Yuryevich ; Novosibirsk State University of Architecture and Civil Engineering. Novosibirsk : NGASU (Sibstrin), 2012. 150 p.
- Lapidus, A. A. Ispol'zovanie metoda Monte-Karlo dlya analiza riskov pri stroitel'stve ob"ektov kapital'nogo stroitel'stva / A. A. Lapidus, O. Yu. Mikhalchenko, A. A. Tkach // Stroitel'noe

- proizvodstvo. 2024. No. 3. Pp. 31–36.
- Saati, T. Analiticheskoe planirovanie. Organizatsiya system [Analytical planning. Organization of systems] / T. Saati, K. Kerns; translated from English. – Moscow: Radio i svyaz', 1991. – 224 p.
- Haken, H. Synergetics: An Introduction: Nonequilibrium Phase Transitions and Self-Organization in Physics, Chemistry and Biology. – Berlin: Springer, 1983. – URL: https://doi. org/10.1007/978-3-642-88338-5.
- 7. Lapidus, A. A. Povyshenie ehffektivnosti organizatsionnotekhnicheskikh reshenij v usloviyakh povyshennogo riska

СТРОИТЕЛЬНОЕ ПРОИЗВОДСТВО № 4 (52)'2024

- [Improving the efficiency of organizational and technical solutions in conditions of increased risk] / A. A. Lapidus, O. T. Ogidan // Components of scientific and technological progress. 2023. No. 6. Pp. 68–73.
- Bak, P. How nature works: The science of self-organized criticality. Copernicus / P. Bak. – DOI https://doi. org/10.1007/978-1-4757-5426-1. – 1996.
- 9. Bak, P. Self-organized criticality/ P. Bak, C. Tang, K. Wiesenfeld. DOI https://doi.org/10.1103/PhysRevA.38.364 // Physical Review A. 1988. Vol. 38, Iss. 1. Pp. 364–374.

УДК 69.05 DOI: 10.54950/26585340_2024_4_99

Определение комплексной технологичности сборно-монолитных систем гражданских зданий методом экспертной оценки

Determination of Civil Construction Prefabricated Monolithic Systems Complex Manufacturability by Expert Evaluation Method

Фомин Никита Игоревич

Кандидат технических наук, доцент, директор Института строительства и архитектуры (ИСА УрФУ), заведующий кафедрой промышленного, гражданского строительства и экспертизы недвижимости, ФГАОУ ВО «Уральский федеральный университет имени первого Президента России Б. Н. Ельцина» (УрФУ), Россия, 620002, Екатеринбург, улица Мира, 19, ni.fomin@urfu.ru

Fomin Nikita Igorevich

Candidate of Engineering Sciences, Associate Professor, Director of the Institute of Construction and Architecture (ICA UrFU), Head of the Department of Industrial, Civil Engineering and Real Estate Expertise, Ural Federal University named after the first President of Russia B. N. Yeltsin (UrFU), Russia, 620002, Yekaterinburg, ulitsa Mira, 19, ni.fomin@urfu.ru

Колмакова Юлия Дмитриевна

Ассистент кафедры промышленного, гражданского строительства и экспертизы недвижимости, ФГАОУ ВО «Уральский федеральный университет имени первого Президента России Б. Н. Ельцина» (УрФУ), Россия, 620002, Екатеринбург, улица Мира, 19, lysova yulia@mail.ru

Kolmakova Yulia Dmitrievna

Assistant of the Department of Industrial, Civil Engineering and Real Estate Expertise, Ural Federal University named after the first President of Russia B. N. Yeltsin (UrFU), Russia, 620002, Yekaterinburg, ulitsa Mira, 19, lysova yulia@mail.ru

Аннотация

Введение. Согласно Сводной стратегии развития обрабатывающей промышленности Российской Федерации до 2030 года и на период до 2035 года применение технологии сборно-монолитного домостроения является одним из основных направлений развития отечественного строительства. Однако реализации и масштабированию данной технологии препятствует сложность оценки технологичности несущего каркаса здания, представляющего собой комбинированную систему, при возведении которой необходимо учитывать как особенности изготовления, транспортирования и монтажа сборных конструкций, так и выполнение монолитных работ на строительной площадке

Методы и материалы. В статье авторами предложен упрощённый способ определения комплексной технологичности сборно-монолитных каркасных систем (СМКС) гражданских зданий с применением показателя технологической живучести системы, основанный на оценке трёх подсистем технологичности: конструктивной, транспортной и монтажной, – на примере

оценки технологичности 6 зарубежных СМКС. Анализ технологичности зарубежных систем был осуществлён путём экспертной оценки методом априорного ранжирования, с последующей проверкой согласованности мнений экспертов с помощью коэффициента Кендалла и критерия Пирсона.

Результаты. Сравнительный анализ 6 зарубежных СМКС гражданских зданий методом экспертной оценки позволил определить степень влияния конструктивных, транспортных и монтажных параметров системы на величину её комплексной технологичности

Выводы. Результаты проведённого исследования позволили подтвердить ранее выдвинутое суждение о том, что высокий уровень применимости каркасной системы в долгосрочной перспективе в большей степени обусловлен показателями транспортной и монтажной технологичности системы.

Ключевые слова: каркасная система, сборно-монолитное домостроение, гражданское строительство, технологичность, технологическая живучесть, экспертная оценка.

Abstract

Introduction. According to the Consolidated Strategy for the Development of the Manufacturing Industry of the Russian Federation up to 2030 and for the period up to 2035, the precast-monolithic construction technology use is one of the main directions of the domestic construction development. Unfortunately, the implementation and scaling of this technology is hindered by the complexity of manufacturability assessing of the building

load-bea ring frame, which is a combined system, the construction of which must take into account the manufacturing, transportation and installation specifics of prefabricated structures, and the performance of monolithic works at the construction site.

Materials and methods. In the article is proposed a simplified the complex manufacturability determining method of prefabricated monolithic frame systems (PMFS) of civil buildings using the technological survivability indicator of the system, based on

the assessment of three manufacturability subsystems: structural, transportation and assembly, on the example of the manufacturability assessing of 6 foreign PMFS. The manufacturability analysis of foreign systems was carried out by means of expert evaluation using the a priori ranking method, followed by checking the expert opinions consistency using Kendall's coefficient and Pearson's criterion.

Results. The assessment of 6 foreign civil buildings PMFS by expert evaluation method allowed to determine the influence degree of structural, transportation and installation system param-

Введение

Развитие и реализация применения технологий сборно-монолитного домостроения являются одним из приоритетных направлений в сфере отечественной стройиндустрии в соответствии со Сводной стратегией развития обрабатывающей промышленности Российской Федерации до 2030 года и на период до 2035 года. Согласно документу, основная цель заключается в увеличении доли индустриального домостроения (в том числе с применением сборно-монолитных каркасных систем (СМКС)) до 60 % от общего объёма объектов капительного строительства.

Однако, ввиду значительного количества типов СМКС, возникает сложность проведения оценки технологичности строительной системы, возводимой с применением технологии сборно-монолитного домостроения. Согласно общепризнанным определениям [1–5], именно технологичность строительной системы является основной характеристикой, определяющей эффективность и надёжность строительного процесса.

Кроме того, известные в настоящее время методики оценки комплексной технологичности строительных конструкций [4; 6–8] предполагают одновременное определение множества параметров, характеризующих четыре подсистемы технологичности: заводскую (конструктивную), транспортную, монтажную и эксплуатационную, что весьма затруднительно, особенно на начальных стадиях инвестиционно-строительного проекта. Также указанные методики являются недостаточно достоверными для оценки комбинированных, т. е. сборно-монолитных систем, т. к. не предусматривают расчёт показателей, учитывающих особенности возведения несущего остова здания с применением данной технологии.

Материалы и методы

Учитывая вышеуказанные особенности реализации технологии сборно-монолитного домостроения, авторами ранее было предложено использовать показатель технологической живучести каркасной системы (**R**) [9], позволяющий численно оценить величины конструктивной, транспортной и монтажной технологичности СМКС на ранних этапах инвестиционно-строительного проекта по следующей формуле [10]:

$$R = k_i I + k_i J = k_i \sum I_{ni} + k_i \sum J_{ni}, \qquad (1)$$

где I — показатель конструктивной технологичности СМКС; J — показатель транспортной и монтажной технологичности СМКС; ΣI_{ni} — сумма расчётных значений конструктивных параметров СМКС; ΣJ_{ni} — сумма расчётных значений технологических параметров СМКС; k_i — коэффициенты влияния значений по соответствующим группам параметров конструктивной, транспортной и монтажной технологичности СМКС.

Однако в формуле определения величины технологической живучести неизвестными являются значения

eters on the value of its complex manufacturability.

Conclusions. The results of the conducted research allowed to confirm the previously put forward judgment that the high level of the frame system applicability in the long term is to a greater extent due to the indicators of transportation and installation system manufacturability.

Keywords: frame system, prefabricated-monolithic housebuilding, civil construction, manufacturability, technological survivability, expert evaluation.

коэффициентов влияния параметров систем (k_i, k_j) . С целью их корректировки и определения степени влияния конструктивных и технологических параметров СМКС гражданских зданий на показатель их комплексной технологичности в данной статье был проведён сравнительный анализ ряда зарубежных систем путём экспертной оценки методом априорного ранжирования, как наиболее эффективного и достоверного способа исследования [11; 12]

Для анализа были отобраны 6 систем, из которых 4 системы являются применяемыми в течение нескольких десятков лет и до настоящего времени и 2 системы, которые не реализуются в практике строительства в настоящее время ввиду высокой сложности выполнения работ при монтаже конструкций. Общие характеристики несущих конструкций, а также изображения узлов их сопряжения для отобранных систем представлены в таблице 1.

Отбор кандидатов в экспертную комиссию для проведения сравнительного анализа параметров технологичности СМКС проводился на основе методики оценки уровня компетентности эксперта в области сборно-монолитного домостроения, подробно представленной в [19], по результатам которого для участия в экспертизе были привлечены 25 отечественных экспертов: специалистов строительных организаций и сотрудников ведущих университетов, а также 5 зарубежных специалистов в области строительства по направлению Civil Engineering.

Каждому эксперту было предложено заполнить анкету, состоящую из 10 критериев (см. рисунок 1), по которым оценивались конструктивно-технологические решения сравниваемых систем. Согласно представленной анкете, экспертам необходимо было проранжировать системы, где ранг 1 соответствует максимально эффективному решению, а 5 — минимально эффективному решению.

Результаты

После работы экспертов полученные ранги по каждому критерию для систем были суммированы, и полученные результаты прошли две ступени проверки на согласованность мнений экспертов:

- оценка согласованности мнений экспертов с помощью коэффициента конкордации Кендалла (W) [20];
- при высоком уровне согласованности мнений экспертов была выполнена проверка неслучайности согласия экспертов по критерию Пирсона (χ²) [21].

Полученные суммы рангов для анализируемых СМКС по рассматриваемым критериям технологичности приведены в таблице 2. В таблице 3 приведены значения коэффициента конкордации Кендалла (W) и критерия Пирсона (χ^2).

Согласно таблице 2 мнения экспертов по вопросам 1-4 и 7-10 можно считать достаточно согласованными, так как коэффициент конкордации $W \ge 0,5$. По вопросам 5

СТРОИТЕЛЬНОЕ ПРОИЗВОДСТВО № 4 (52)'2024

Название конструктивной системы	Краткая характеристика системы	Изображение каркаса
IMS System	Колонны – сборные 2-3-этажной разрезки, с величиной сечения 400×400 мм. Ригели – монолитные. Плиты перекрытия – сборные многопустотные, имеют вырезы по углам.	
U.S. Conventional System	 Колонны – сборные многоэтажной разрезки, до 6 этажей, с величиной сечения 400×400 мм. Ригели – сборные L-образного и Т-образного сечения, с металлическими пластинами, установленными на полках, для крепления плит перекрытия. Плиты перекрытия – двойного таврового сечения. Общая толщина диска перекрытия 660 мм. 	
Contiframe System	Колонны – сборные одноэтажной разрезки, с величиной сечения 400×400 мм. Ригели – предусмотрены нескольких типов для монтажа крайнего и среднего ряда: однопролётные и двухпролётные. Плиты перекрытия – сборные многопустотные. Общая толщина диска перекрытия 1320 мм.	
Structurapid System	Колонны – сборные полые трубчатого сечения одноэтажной разрезки, с величиной сечения 230×230 мм или 305×305 мм. Ригели – сборные L-образного и Т-образного сечения, высотой: 254, 356 мм, шириной: 200, 305, 355 мм. Плиты перекрытия – сборные многопустотные.	
University of Nebraska System	Колонны – сборные многоэтажной разрезки, до 3 этажей, с величиной сечения 200×200 мм. Ригели – сборные прямоугольного сечения, шириной 1,6 м, с центральным жёлобом длиной 2,5 м и закладными деталями в области примыкания к колоннам. Плиты перекрытия – сборные многопустотные, толщиной 330 мм.	
PD2 Frame System	Колонны – сборные многоэтажной разрезки, до 4 этажей, с величиной сечения 290×290 мм. Ригели – сборные L-образного и Т-образного сечения с выступающими частями для опирания на колонны. Плиты перекрытия – сборные многопустотные. Общая толщина диска перекрытия 650 мм.	

Табл. 1. Общие характеристики несущих конструкций СМКС, выбранных для проведения экспертной оценки [13–18] **Tab. 1.** General characteristics of the PMFS load-bearing structures selected for expert evaluation

2. Ответьте на представленны **	Контактн	Контактные данные:		Опыт работы в сфере строительства: Опыт работы в сфере СМС:	ьства:
"I" coorbereinger me	2. Ответьте на представленные ниже вопросы, для этого каждой из *Paнr «1» соответствует максимально эффективному решению,		монолитных систем назначьт но эффективному; при ответе	приведённых сборно-монолитных систем назначьте соответствующий, по вашему мнению, ранг от 1 до 6* ранг «6» — минимально эффективному; при ответе на один вопрос ранги НЕ ДОЛЖНЫ повторяться	мнению, ранг от 1 до 6* ЖНЫ повторяться
	3ar	Зарубежные сборно-монолитные каркасные системы	ные каркасные системы		
IMS System	U.S. Conventional System	Contiframe System	Structurspid System	University of Nebraska System	PD2 Frame System
з степень конструктив	Оцените степень конструктивной гибкости вертикальных несущих элементов	есущих элементов			
е степень конструктив	Оцените степень конструктивной гибкости горизонтальных несущих элементов (ригелей)	несущих элементов (ригелей)			
е степень конструктив	Оцените степень конструктивной гибкости горизонтальных несущих элементов (плит перекрытия)	несущих элементов (плит пер	екрытия)		
е системы с точки зрен	Оцените системы с точки зрения общей сложности их конструктивных характеристик (внешний вид конструкций, их соединений и т.	руктивных характеристик (вне	ешний вид конструкций, их с	оединений и т. д.)	
е трудоёмкость трансп	Оцените трудоёмкость транспортировки вертикальных несущих конструкций каркасной системы на строительную площадку	щих конструкций каркасной с	истемы на строительную пло	щадку	
е трудоёмкость трансп	Оцените трудоёмкость транспортировки горизонтальных несущих конструкций каркасной системы на строительную площадку	сущих конструкций каркасной	й системы на строительную пл	лощадку	
е трудоёмкость монтах	Оцените трудоёмкость монтажа вертикальных несущих конструкций каркасной системы	струкций каркасной системы			
е трудоёмкость монтая	Оцените трудоёмкость монтажа горизонтальных несущих конструкций (ригелей) каркасной системы	 онструкций (ригелей) каркасн	ой системы		
 е трудоёмкость монта»	Оцените трудоёмкость монтажа горизонтальных несущих конструкций (плит перекрытия) каркасной системы	онструкций (плит перекрытия)) каркасной системы		

Рис. 2. Анкета для экспертов для сравнительного анализа параметров СМІ **Fig. 1.** Questionnaire for experts for comparative analysis of PMFS paramete

Наименование					Номер і	критерия			Номер критерия										
системы	1	2	3	4	5	6	7	8	9	10									
	2	3	4	5	6	7	8	9	10	11									
U.S. Conventional System	113	98	32	117	92	88	102	134	87	72									
University of Nebraska	53	44	109	77	73	89	89	112	112	135									
Contiframe	51	40	109	45	98	71	127	77	134	107									
PD2 Frame	58	118	96	107	78	91	138	133	102	100									
IMS	129	124	48	52	115	109	43	38	38	42									
Structurapid	127	104	128	129	71	78	39	44	53	67									

Табл. 2. Суммы рангов СМКС по рассматриваемым критериям опроса **Таb. 2.** Sums of PMFS ranks according to the survey criteria under consideration

Показатель					Номер к	ритерия				
	1	2	3	4	5	6	7	8	9	10
	2	3	4	5	6	7	8	9	10	11
W	0,67	0,62	0,64	0,56	0,05	0,08	0,51	0,79	0,85	0,60
X 2 pac4.	83,65	77,62	80,07	70,27	5,89	9,60	63,12	98,60	105,80	75,58
X 2 табл.		11,070								

Табл. 3. Показатели коэффициента Кендалла и критерия Пирсона по 10 критериям экспертного опроса **Таb. 3.** Kendall's coefficient and Pearson's criterion for the 10 criteria of the expert survey

и 6 коэффициент конкордации ниже значения 0,4, что указывает на низкую согласованность мнений экспертов, следовательно, результаты опроса по данным вопросам не могут использоваться в дальнейшем исследовании. По критерию Пирсона (см. таблицу 3) также мнения экспертов по вопросам 1-4 и 7-10 можно считать согласованными с вероятностью 0,95, так как $\chi^2_{\text{табл.}} < \chi^2_{\text{расч.}}$, а мнения по 5 и 6 вопросу несогласованны с вероятностью 0,95, так как $\chi^2_{\text{табл.}} > \chi^2_{\text{расч.}}$.

Предполагается, что несогласованность мнений экспертов по критериям, оценивающим трудоёмкость транспортировки несущих сборных конструкций каркаса, может быть обусловлена недостаточно точной формулировкой вопросов в представленной анкете. В связи с этим результаты опроса по данным критериям не учитывались в дальнейшем исследовании.

Согласно полученным значениям рангов было рассчитано общее значение величины показателя технологической живучести для каждой рассматриваемой системы, согласно экспертной комиссии, а также выявлено процентное соотношение параметров конструктивной, транспортной и монтажной технологичности систем в данном показателе (см. таблицу 4).

Согласно визуализации значений технологической живучести и составляющих её показателей в таблице 4, составленной для небольшой выборки сборно-монолитных систем, можно сделать следующие выводы:

- 1. Для систем (PD2 Frame, U.S. Conventional system, University of Nebraska, Contiframe), активно применяемых в строительной практике до настоящего времени, характерны высокие значения технологической живучести.
- 2. Величина технологической живучести систем, а следовательно, и их уровень технологичности, в меньшей степени зависит от конструктивных решений, так как распределение значений *I* и *R* не сопоставимы между собой.
- 3. Величина конструктивной технологичности для активных систем в основном соответствует низким и средним значениям, что указывает на то, что геометрические характеристики несущих элементов каркаса в меньшей степени влияют на технологичность СМКС гражданских зданий.
- 4. Для систем, относящихся к категории применимости «активные», показатель транспортной и монтажной технологичности (*J*) практически в 2 раза превышает значения, полученные для неактивных систем, а значит, оценку данного показателя необходимо проводить, в пер-

Наименование системы	Категория применимости	применимости СМКС			Процентное соотношение		
	системы	1	J	R	% (1)	% (J)	
1	2	3	4	5	6	7	
PD2 Frame	активная	379	473	852	44,5	55,5	
U.S. Conventional System	активная	325	450	755	40,6	59,6	
University of Nebraska	активная	283	448	731	38,7	61,2	
Contiframe	активная	245	445	690	35,5	64,5	
Structurapid	неактивная	378	203	581	65	35	
IMS	неактивная	353	161	514	68,7	31,3	

Примечание: I – конструктивная технологичность, J – транспортная и монтажная технологичность, R – показатель технологической живучести, полученный в ходе проведения экспертной комиссии

Табл. 4. Тепловая карта расчётных значений технологической живучести зарубежных СМКС и её составляющих по результатам экспертной оценки

Tab. 4. Heat map of estimated values of foreign PMFS technological survivability and its components based on the results of expert evaluation

вую очередь, при определении технологичности сборномонолитной системы.

Резюмируя вышесказанное, а также учитывая представленное в таблице 4 процентное соотношение показателей конструктивной (I), транспортной и монтажной (J) технологичности, значения коэффициентов их влияния (k_i , k_j , см. формулу (1)) в усреднённых значениях следует принимать равными 0,4 и 0,6 соответственно.

Заключение

Оценка комплексной технологичности каркасных систем гражданских зданий, возводимых с применением технологии сборно-монолитного домостроения, с применением показателя технологической живучести по представленной в статье формуле позволяет провести анализ конструктивно-технологических решений СМКС гражданских зданий на ранних этапах инвестиционно-строительного проекта, а именно в процессе разработки пред-

СПИСОК ЛИТЕРАТУРЫ

- 1. Гусаков, А. А. Организационно-технологическая надёжность строительства / А. А. Гусаков, С. А. Веремеенко, А. В. Гинзбург и др. Москва: SvR-Аргус, 1994. 472 с.
- 2. Гинзбург, А. В. Организационно-технологическая надёжность строительных систем / А. В. Гинзбург // Вестник МГСУ. 2010. № 4. С. 251–255.
- 3. Лапидус, А. А. Организационно-технологическая надёжность производственно-логистических процессов в строительстве / А. А. Лапидус, Г. Б. Сафарян // Наука и бизнес: пути развития. 2019. № 3 (93). С. 148–152.
- 4. Лебедев, В. М. Определение технологичности проектов строительства и реконструкции объектов / В. М. Лебедев, И. А. Ломтев // Вестник БГТУ им. В. Г. Шухова. 2017. № 11 С. 80–83
- 5. Лебедев, В. М. Определение организационно-технологической надёжности строительного производства с использованием системоквантов / В. М. Лебедев, Г. В. Беликова // Вестник БГТУ им. В. Г. Шухова. 2016. № 11. С. 84–87.
- 6. Булгаков, С. Н. Технологичность железобетонных конструкций и проектных решений / С. Н. Булгаков. Москва : Стройиздат. 1983. 303 с.
- 7. Кузнецова, Е. В. Методы оптимизации показателей общей технологичности зданий и сооружений / Е. В Кузнецова // Сборник докладов 57-й Международной научно-технической конференции молодых учёных и студентов ; Санкт-Петербургский государственный архитектурно-строительный университет. 1999. № 3. С. 3 4.
- 8. Лялин, Д. А. Технологичность возведения железобетонных каркасов многоэтажных зданий / Л. Д. Лялин, Е. М. Пугач // Вестник евразийской науки. 2022. Т. 14, № 2. URL: https://esj.today/PDF/44SAVN222.pdf.
- Колмакова, Ю. Д. Новые конструктивно-технологические решения для повышения технологической живучести сборномонолитных систем гражданских зданий / Ю. Д. Колмакова, Н. И. Фомин // Академический вестник УралНИИпроект РААСН. 2023. № 2 (57). С. 88–93.
- 10. Колмакова, Ю. Д. Оценка технологической живучести сборно-монолитных систем гражданских зданий / Ю. Д. Колмакова, Н. И. Фомин // Components of Scientific and Technological Progress. 2023. № 12 (90). С. 71–82.
- 11. Митягина, М. Н. Применение метода априорного ранжиро-

проектной документации (на стадии отбора конкретной системы для её реализации при возведении здания).

Возможность прогнозирования степени технологичности принятых решений до начала проектирования и возведения каркасной системы обеспечена упрощённым способом их оценки, не требующим определения множества неизвестных конструктивных, технологических и стоимостных параметров отобранной каркасной системы, за счёт чего может быть повышен уровень применимости и масштабирования технологии сборно-монолитного домостроения в отечественной практике строительства.

Экспертная оценка 6 зарубежных СМКС гражданских зданий показала, что высокий уровень комплексной технологичности и применимости каркасной системы в долгосрочной перспективе в большей степени обусловлен показателями транспортной и монтажной технологичности системы, что подтверждают ранее проведённые авторами исследования в данной области [10].

- вания при оценке уровня готовности технологии в сложной технической системе / М. Н. Митягина, С. А. Назаревич // Системный анализ и логистика. 2023. № 2 (36). С. 45 53.
- 12. Шепелев, Г. В. О подходах к экспертной оценке эффективности научных исследований / Г. В. Шепелев // Управление наукой: теория и практика. 2022. Т. 4, № 3. С. 105 128.
- 13. Шаленный, В. Т. Сборно-монолитное домостроение : учебник / В. Т. Шаленный, О. Л. Балакчина. Москва : Ай Пи Ар Медиа. 2021. 178 с.
- 14. Nikolic, J. Building "with the Systems" vs. Building "in the System" of IMS Open Technology of Prefabricated Construction: Challenges for New "In-fill" Industry for Massive Housing Retrofitting / J. Nikolic. DOI 10.3390/en11051128 // Energies. 2018. No. 11 (5). Art. 1128.
- 15. Contiframe. The Natural Progression / Contiframe Company. Atherstone, War wickshire, Great Britain: Contiframe Structures Limited, 1992.
- 16. Henin, E. Shallow Flat Soffit Precast Concrete Floor System / E. Henin, M. Tardos // Practice Periodical on Structural Design and Construction. 2013. Vol. 18, No. 2. Pp. 101–110.
- 17. The Legacy and Future of an American icon: The Precast, Prestressed Concrete Double Tee / G. D. Nasser, M. Tadros, A. Sevenker, D. Nasser // PCI, Prestressed Concrete Institute. 2015. Vol. 60, No. 4.– Pp. 49–68.
- 18. Shawkat, S. Application of Structural System in Building Design / S. Shawkat, R. Schlesinger. Brno, Czech republic: Tribun EU, 2020. 499 p.
- 19. Лысова, Ю. Д. Методика оценки уровня компетентности эксперта в области сборно-монолитного домостроения / Ю. Д. Лысова, Л. И. Миронова, Н. И. Фомин // Известия вузов. Инвестиции. Строительство. Недвижимость. 2023. Т. 13, № 1. С. 48–57.
- Бакланов, В. А. Анализ возможности повышения уровня достоверности результатов экспертных оценок при подготовке и принятии управленческих решений / В. А. Бакланов,
 Э. Я. Семенцова, А. П. Чумаченко // Электронный научный журнал ГосРег: государственное регулирование общественных отношений. 2023. № 1 (43). С. 42–50.
- 21. Бурзун, М. С. Оценка надёжности показателей работы системы по критерию Пирсона (критерию X2) / С. Н. Бурзун, В. В. Ковальчук // Universum: технические науки. 2022. № 5-1 (98). С. 61–62.

- Gusakov, A. A. Organizatsionno-tekhnologicheskaya nadezhnost' stroitel'stva [Organization and technological reliability of construction] / A. A. Gusakov, S. A. Veremeenko, A.V. Ginzburg et al. – Moscow: SvR-Argus, 1994. – 472 p.
- Ginzburg, A. V. Organizatsionno-tekhnologicheskaya nadyozhnost' stroitel'nykh system [Organization and technological reliability of construction system] / A. V. Ginzburg // Vestnik MGSU [Bulletin of MGSU]. – 2010. – No. 4. – Pp. 251–255.
- Lapidus, A. A. Organizatsionno-tekhnologicheskaya nadezhnost' proizvodstvenno-logisticheskikh protsessov v stroitel'stve [Organizational and technological reliability of production and logistics processes in construction] / A. A. Lapidus, G. B. Safaryan // Nauka i biznes: puti razvitiya [Science and Technology business: ways of development]. – 2019. – No. 3 (93). – Pp. 148–152.
- Lebedev, V. M., Opredelenie tekhnologichnosti proektov stroitel'stva i rekonstruktsii ob"ektov [Determination of technology of projects of construction and reconstruction of objects] / V. M. Lebedev, I. A. Lomtev // Vestnik BGTU im. V. G. Shuhova [Bulletin of the BSTU named after V. G. Shukhov]. – 2017. – No. 11. – Pp. 80–83.
- Lebedev, V. M. Opredelenie organizatsionno-tekhnologicheskoj nadyozhnosti stroitel'nogo proizvodstva s ispol'zovaniem sistemokvantov [Certain organizational-technological reliability construction of the use sistemokvants] / V. M. Lebedev, G. V. Belikova // Vestnik BGTU im. V. G. Shuhova [Bulletin of BSTU named after V. G. Shukhov]. – 2016. – No. 11. – Pp. 84–87.
- Bulgakov, S. N. Tekhnologichnost' zhelezobetonnykh konstruktsij i proektnykh reshenij [Technological reliability of reinforced concrete structures and design solutions] / S. N. Bulgakov. – Moscow: Stroyizdat, 1983. – 303 p.
- Kuznetsova, E. V. Metody optimizatsii pokazatelej obshhej tekhnologichnosti zdanij i sooruzhenij [Methods of optimization of general manufacturability indicators of buildings and structures] / E. V. Kuznetsova // Sbornik dokladov 57-j Mezhdunarodnoj nauchno-tekhnicheskoj konferencii molodyh uchenyh i studentov [Collection of reports of the 57th International Scientific and Technical Conference of Young Scientists and Students]; St. Petersburg State University of Architecture and Civil Engineering. – 1999. – No. 3. – Pp. 3-4.
- 8. Lyalin, D. A. Tekhnologichnost' vozvedeniya zhelezobetonnykh karkasov mnogoetazhnykh zdanij [Manufacturability of construction of reinforced concrete frames of multi-storey buildings] / L. D. Lyalin, E. M. Pugach // Vestnik Evrazijskoj nauki [The Eurasian Scientific Journal]. 2022. Vol. 14, No. 2. URL: https://esj.today/PDF/44SAVN222.pdf.
- Kolmakova, Yu. D. Novye konstruktivno-tekhnologicheskie resheniya dlya povysheniya tekhnologicheskoj zhivuchesti sborno-monolitnykh sistem grazhdanskikh zdanij [New structural and technological solutions for improvement the precast-monolithic systems technological survivability of civil buildings] / Yu. D. Kolmakova, N. I. Fomin // Akademicheskij vestnik UralNIIproekt RAASN [Academic Bulletin of UralNIIproekt RAASN. Construction Sciences]. – 2023. – No. 2 (57). – Pp. 88–93.
- Kolmakova, Yu. D. Otsenka tekhnologicheskoj zhivuchesti sborno-monolitnyh sistem grazhdanskih zdanij [Technological survivability assessment of precast-monolithic systems of civil

buildings] / Yu. D. Kolmakova, N. I. Fomin // Components of Scientific and Technological Progress. – 2023. – No. 12 (90). – Pp. 71–82.

СТРОИТЕЛЬНОЕ ПРОИЗВОДСТВО № 4 (52)'2024

- 11. Mityagina, M. N. Primenenie metoda apriornogo ranzhirovaniya pri otsenke urovnya gotovnosti tekhnologii v slozhnoj tekhnicheskoj sisteme [Application of the aprior ranking method in assessing the level of technology readiness in a complex technical system] / M. N. Mityagina, S. A. Nazarevich // Sistemnyj analiz i logistika [System analysis and logistics]. 2023. No. 2 (36). Pp. 45–53.
- 12. Shepelev, G. V. O podkhodakh k ekspertnoj otsenke ehffektivnosti nauchnyhh issledovanij [On expert evaluation of the scientific research effectiveness] / G. V. Shepelev // Upravlenie naukoj: teoriya i praktika [Management of science: theory and practice]. 2022. Vol. 4, No. 3. Pp. 105–128.
- 13. Shalennyj, V. T. Sborno-monolitnoe domostroenie : uchebnik [Prefabricated-monolithic building construction : textbook] / V.T. Shalennyj, O. L. Balak. Moscow : IPR Media, 2021. 178 p.
- 14. Nikolic, J. Building "with the Systems" vs. Building "in the System" of IMS Open Technology of Prefabricated Construction: Challenges for New "In-fill" Industry for Massive Housing Retrofitting / J. Nikolic. DOI 10.3390/en11051128 // Energies. 2018. No. 11 (5). Art. 1128.
- 15. Contiframe. The Natural Progression / Contiframe Company. Atherstone, War wickshire, Great Britain: Contiframe Structures Limited, 1992.
- 16. Henin, E. Shallow Flat Soffit Precast Concrete Floor System / E. Henin, M. Tardos // Practice Periodical on Structural Design and Construction. 2013. Vol. 18, No. 2. Pp. 101–110.
- 17. The Legacy and Future of an American icon: The Precast, Prestressed Concrete Double Tee / G. D. Nasser, M. Tadros, A. Sevenker, D. Nasser // PCI, Prestressed Concrete Institute. 2015. Vol. 60, No. 4.– Pp. 49–68.
- 18. Shawkat, S. Application of Structural System in Building Design / S. Shawkat, R. Schlesinger. Brno, Czech republic: Tribun EU, 2020. 499 p.
- 19. Lysova, Yu. D. Metodika otsenki urovnya kompetentnosti ehksperta v oblasti sborno-monolitnogo domostroeniya [Methodology for assessing the competence level of experts in cast-in-place and precast construction] / Yu. D. Lysova, L. I. Mironova, N. I. Fomin // Izvestiya vuzov. Investitsii. Stroitel'stvo. Nedvizhimost' [Proceeding of Universities. Investment. Construction. Real estate]. 2023. Vol. 13, No. 1. Pp. 48–57.
- 20. Baklanov, V. A. Analiz vozmozhnosti povysheniya urovnya dostovernosti rezul'tatov ehkspertnykh otsenok pri podgotovke i prinyatii upravlencheskikh reshenij [Analyzing the possibility of increasing the level of reliability of the results of expert assessments in the preparation and adoption of managerial decisions] / V. A. Baklanov, E. Ya. Sementsova, A. P. Chumachenko // Ehlektronnyj nauchnyj zhurnal GosReg: gosudarstvennoe regulirovanie obshhestvennykh otnoshenij [Electronic scientific journal GosReg: state regulation of public relations]. 2023. No. 1 (43). Pp. 42–50.
- 21. Burzun, M. S. Otsenka nadezhnosti pokazatelej raboty sistemy po kriteriyu Pirsona (Kriteriyu X2) [Reliability assessment of the system performance indicators according to the Pearson criterion (X2 criterion)] / S. N. Buzun, V. V. Kovalchuk // Universum: tekhnicheskie nauki [Universum: technical sciences]. − 2022. − № 5-1 (98). − Pp. 61-62.

Механизмы и применение энергосберегающих технологий при капитальном ремонте многоквартирных домов

Mechanisms and Application of Energy-Saving Technologies in Major Repairs of Apartment Buildings

Чернышов Леонид Николаевич

Доктор экономических наук, профессор, профессор кафедры жилищно-коммунального комплекса, ФГБОУ ВО «Национальный исследовательский Московский государственный строительный университет» (НИУ МГСУ), Россия, 129337, Москва, Ярославское шоссе, 26

Chernyshov Leonid Nikolaevich

Doctor of Economic Sciences, Professor, Professor of the Department of Housing and Communal Services, National Research Moscow State University of Civil Engineering (NRU MGSU), Russia, 129337, Moscow, Yaroslavskoe shosse, 26

Смолина Лидия Филипповна

Кандидат экономических наук, доцент, преподаватель кафедры жилищно-коммунального комплекса, ФГБОУ ВО «Национальный исследовательский Московский государственный строительный университет» (НИУ МГСУ), Россия, 129337, Москва, Ярославское шоссе, 26, SmolinaLF@mail.ru

Smolina Lidiya Filippovna

Candidate of Economic Sciences, Associate Professor, Lecturer at the Department of Housing and Communal Services, National Research Moscow State University of Civil Engineering (NRU MGSU), Russia, 129337, Moscow, Yaroslavskoe shosse, 26, SmolinaLF@mail.ru

Аннотация. Организация и проведение капитального ремонта многоквартирных домов (МКД) представляет собой одну из ключевых задач в сфере управления жилищным фондом. В условиях износа инженерных систем и конструктивных элементов зданий актуальность своевременного и качественного капитального ремонта возрастает. Однако применяемые методы и технологии зачастую не обеспечивают необходимого уровня энергоэффективности, что приводит к увеличению финансовых затрат и снижению качества выполненных работ.

В статье рассматриваются современные подходы к реализации капитального ремонта с акцентом на внедрение энергоэффективных технологий и оптимизацию организационнотехнологических процессов. Использование инновационных материалов и технологий позволяет значительно сократить потребление энергетических ресурсов, снизить расходы на оплату коммунальных услуг и продлить срок службы инженерных систем. Внедрение энергоэффективных решений, таких как установка индивидуальных тепловых пунктов, модернизация

Abstract. Organising and carrying out capital repairs of apartment buildings is one of the key tasks in the sphere of housing stock management. In conditions of wear and tear of engineering systems and structural elements of buildings, the relevance of timely and quality capital repairs is increasing. However, the applied methods and technologies often do not provide the necessary level of energy efficiency, which leads to an increase in financial costs and a decrease in the quality of work performed.

The article considers modern approaches to the implementation of capital repairs with a focus on the introduction of energy-efficient technologies and optimisation of organisational and technological processes. The use of innovative materials and technologies makes it possible to significantly reduce the consumption of energy resources, reduce the cost of utility bills and extend the service life of engineering systems. The introduction of energy-efficient solutions, such as the installation of individual heat points, modernisation of heating and hot water supply sys-

Введение

В Российской Федерации значительное количество многоквартирных домов с низкой энергоэффективностью, что влечёт за собой большие энергопотери. Большая часть домов потребляет энергоресурсов намного больше, чем им это необходимо.

систем отопления и горячего водоснабжения, теплоизоляция ограждающих конструкций, способствует созданию комфортных условий проживания для граждан. Энергоэффективный капитальный ремонт не только снижает эксплуатационные расходы, но и положительно влияет на экологическую обстановку, уменьшая выбросы углекислого газа за счёт рационального использования энергоресурсов.

Предложенные в статье механизмы и рекомендации направлены на совершенствование системы капитального ремонта МКД, повышение его экономической эффективности и качества выполнения работ. Внедрение современных технологий и стандартов качества позволит существенно повысить уровень комфорта и безопасности проживания, а также продлить срок службы многоквартирных домов.

Ключевые слова: энергосбережение, капитальный ремонт, энергоресурсы, организационно-технологический механизм, коммунальные услуги, жизненный цикл зданий, модернизация, энергоэффективность, энергосервисный контракт.

tems, and thermal insulation of building envelopes, contributes to the creation of comfortable living conditions for citizens. Energyefficient capital repairs not only reduce operating costs, but also have a positive impact on the environmental situation by reducing carbon dioxide emissions through the rational use of energy resources.

The mechanisms and recommendations proposed in the article are aimed at improving the system of capital repair of apartment buildings, increasing its economic efficiency and quality of work. The introduction of modern technologies and quality standards will significantly improve the level of comfort and safety of living, as well as extend the service life of apartment buildings.

Keywords: energy saving, capital repair, energy resources, organisational and technological mechanism, public utilities, life cycle of buildings, modernisation, energy efficiency, energy service contract.

Капитальный ремонт играет ключевую роль в процессе эксплуатации зданий и сооружений. Своевременное выполнение таких работ предусматривает продление срока службы объектов недвижимости. Кроме того, проведение капитального ремонта способствует повышению

СТРОИТЕЛЬНОЕ ПРОИЗВОДСТВО № 4 (52)'2024

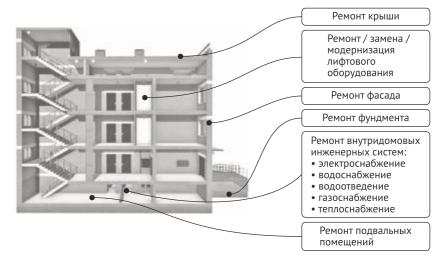


Рис. 1. Работы по капитальному ремонту МКД Fig. 1. Major repairs of apartment buildings

энергоэффективности зданий, что положительно влияет на комфортные условия проживания.

Капитальный ремонт многоквартирных домов включает в себя обширный спектр работ, и эти работы могут изменяться в зависимости от различных ситуаций.

Материалы и методы

Согласно статье 166 Жилищного кодекса, в состав капитального ремонта включаются работы [1], представленные на рисунке 1.

Использование передовых технологий и новейших строительных материалов занимает ключевое место в процессе капитального ремонта зданий и сооружений. Данные мероприятия улучшают энергетическую эффективность многоквартирных домов. В процессе капитального ремонта особый акцент делается на установке новых систем отопления, утеплении фасадов и кровли, а также модернизации инженерных коммуникаций с внедрением приборов учёта и контроля. Эти мероприятия не только

сокращают расходы на энергоресурсы, но и вносят существенный вклад в защиту окружающей среды.

Энергоэффективный капитальный ремонт многоквартирных домов включает в себя комплекс мероприятий, направленных на снижение потребления энергоресурсов и повышение общей энергоэффективности зданий [2]. Перечень мероприятий представлен на рисунке 2.

Эти мероприятия направлены на сокращение расходов на коммунальные услуги, повышение комфортности проживания и снижение негативного воздействия на окружающую среду.

Приказом Министерства строительства Российской Федерации № 98/пр приведён список мероприятий, направленных на повышение энергоэффективности зданий в процессе капитального ремонта [3].

Кроме того, Минстрой России разработал комплекс мер, позволяющий оценить технические параметры многоквартирных домов. Эти показатели предусматривают

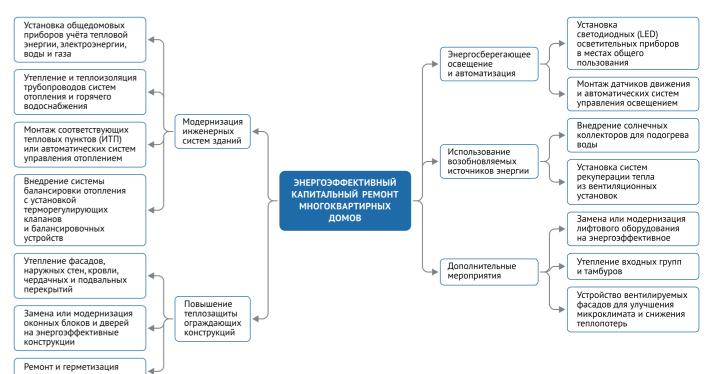


Рис. 2. Перечень мероприятий энергоэффективного ремонта Fig. 2. List of energy efficient renovation measures

Показатель		Данные	
Информация о доме	 город типовая серия этажность материал стен этажность год ввода МКД в эксплуатацию 		
		===	

	 этажность материал стен этажность год ввода МКД в эксплуатацию
Потребление коммунальных ресурсов	потребление тепловой энергии на отопление и ГВСпотребление электроэнергии
Мероприятия, направленные на повышение энергоэффективности здания	 установка управляющих и регулирующих узлов потребления тепловой энергии работы по модернизации систем ГВС и/или отопления теплозащита окон в местах общего пользования ремонт и утепление фасада ремонт входной группы повышение теплозащиты подвала ремонт/замена и теплоизоляция трубопроводов отопления и горячего водоснабжения утепление кровли в процессе ремонта замена осветительного оборудования на новое с использованием энергосберегающих технологий ремонт и замена лифтового оборудования
Экономические расчёты	 затраты на выбранные мероприятия экономия энергетических ресурсов показатель экономии срок окупаемости

Табл. 1. Система показателей, отражающая основные параметры **Таb. 1.** A system of indicators reflecting the main parameters

обеспечение формирования связи по каждому МКД и помогают определить обеспеченность различных мер по улучшению. Данная система показателей представлена в таблице 1.

Результаты

Необходимость в информации о многоквартирном доме заключается в том, чтобы учитывать регион строительства, в особенности климатические условия, материал стен и год постройки, эти данные позволят правильно оценить возможность применения энергоэффективных мероприятий.

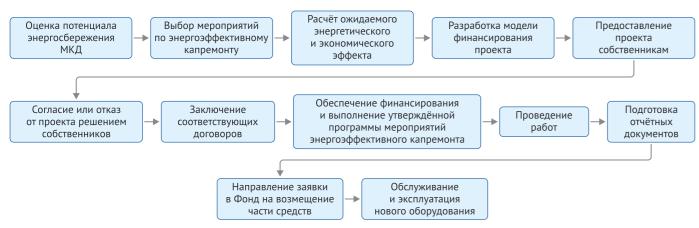
Показатель данных о потреблении энергетических ресурсов позволяет оценить рациональность использования энергоресурсов на нужды отопления, горячего водоснабжения и электроснабжения [4].

На выбор того или иного мероприятия влияет регион, в котором находится здание, из чего оно было построено, наличие подвального и чердачного помещений, состояние систем и размер фонда капитального ремонта.

Наиболее востребованным в России вариантом по повышению энергоэффективности является установка узлов управления и регулирования потребления тепловой энергии, чтобы уменьшить расходы коммунальных ресурсов. Также востребованными мероприятиями являются ремонт фасада и замена окон в местах общего пользова-

ния. Данные мероприятия помогают избегать потерь тепла через ограждающие конструкции, а также улучшают внешний вид здания [5].

Комплекс данных мероприятий помогает повысить комфортность проживания в многоквартирном доме и также снизить стоимость платы за коммунальные услуги.


Экономические расчёты необходимы для оценки проведённых мероприятий. Там указывается сумма, потраченная на ремонтные работы, экономия энергетических ресурсов, также обязательным фактором являются процент экономии и срок окупаемости пакета мероприятий.

Этапы проведения энергоэффективного капитального ремонта представлены на рисунке 3.

Соблюдение всех этапов при проведении энергоэффективного ремонта даёт следующие преимущества:

- экономию потребления коммунальных ресурсов и снижение платы за коммунальные услуги;
- улучшение комфортности проживания в многоквартирном доме;
- повышение спроса на рынке недвижимости на такое жильё [6; 7].

Здания, оборудованные узлами управления и регулирования потреблением тепловой энергии и обновлёнными инженерными системами, получают все перечисленные преимущества.

Рис. 3. Этапы проведения энергоэффективного капитального ремонта **Fig. 3.** Stages of energy-efficient major repairs

108

СТРОИТЕЛЬНОЕ ПРОИЗВОДСТВО № 4 (52)'2024

использованию вычислений

для определения класса энергетической

в органы государственного надзора

осуществляющими эксплуатацию МКД

за управляющими организациями.

эффективности с последующим капитальным

ремонтом и предоставлением результатов

Рис.4. Мероприятия для проведения капитального ремонта на федеральном уровне **Fig. 4.** Activities for capital repairs at the federal level

Puc.5. Мероприятия для проведения капитального ремонта на местном уровне **Fig. 5.** Activities for capital repairs at the local level

• участию в работе комиссий по приёмке

капитального ремонта многоквартирных

направленных на энергосбережение

оказанных услуг и (или) выполненных в ходе

домов работ в части осуществления приёмки

оказанных услуг и (или) выполненных работ,

и повышение энергетической эффективности

• проведению энергоаудита для МКД с целью

определения потенциала повышения

и формирования решений, направленных

на энергоэффективность капитального

ресурсосбережения объектов

ремонта

Для стимулирования проведения энергоэффективного капремонта Правительством в 2017 году принято решение о предоставлении финансовой поддержки через ППК «Фонд развития территорий» (до 1 января 2022 г. – Фонд содействия реформированию ЖКХ).

Вместе с тем государственная политика, направленная на повышение энергоэффективности жилого фонда при проведении капитального ремонта, недостаточно эффективна. В стратегических документах, разработанных Минстроем и принятых на уровне Правительства РФ, не указаны конкретные цели для достижения энергосбережения в ЖКК. В принятых на федеральном уровне госпрограммах не предусматривается достижение цели повышения энергоэффективности при планировании капитального ремонта зданий и сооружений. Прогнозирование роста отрасли строительства и ЖКХ до 2030 года включает в себя мероприятия по энергосбережению, при этом показатели, предусматривающие снижение потребления ресурсов, не указываются [8].

Единственного механизма, оказывающего финансовую поддержку организации энергоэффективного капремонта с помощью субсидий Фонда развития территорий, чтобы компенсировать часть таких затрат, недостаточно. Анализ показал, что проведение таких работ считается эффективным. Так, средний размер экономии расходов на коммунальные ресурсы после проведения энергоэффективного капремонта оценивается в 20 %. Учитывая сложный порядок подачи заявок на получение такой поддержки, субъекты РФ смогли её получить лишь на небольшую часть домов: за 2017–2022 годы истрачено более 400 млн руб. на 343 дома (0,02 % жилого фонда). Поэтому необходимо разработать механизмы по другим стимулам, чтобы собственники жилых помещений и эксплуатирующие организации стремились к проведению энергоэффективного капремонта. Среди других механизмов можно выделить долгосрочные кредиты, среди которых есть и льготные.

Счётная палата Российской Федерации на основании акта по результатам проверки предложила выстроить очерёдность энергоэффективных капитальных ремонтов. В первую очередь запланировано модернизировать энергоэффективность зданий, построенных до 2000 года. Процент площадей подобных домов к 2060 году будет равен 28 %. Следующим этапом — организация энергоэффективного ремонта зданий, построенных позже (36 % жилой площади к 2060 году) из-за того, что при их строительстве была использована часть энергоэффективных технологий.

Отсутствие объективной информации об энергоэффективности домов является не менее важной проблемой для мониторинга ситуации и выработки решений на федеральном уровне, направленных на энергоэффективность. Согласно информации, размещённой в ГИС ЖКХ и АИС «Реформа ЖКХ», параметры, характеризующие энергоэффективность домов, зачастую не только отличаются друг от друга, но и не соответствуют фактическим значениям. Например, из 108 многоквартирных домов, подвергнутых анализу, в системе ГИС ЖКХ отсутствуют данные о 95 объектах. В АИС «Реформа ЖКХ» аналогичная ситуация наблюдается для 76 из этих же домов. В системе ГИС «Энергоэффективность», которая была

введена в 2021 году, отсутствуют сведения, необходимые для определения классов энергоэффективности зданий. Уровень доверия инвесторов, органов власти, населения к программам энергосбережения значительно снижается из-за отсутствия в открытом доступе информации о реальном потреблении электроэнергии, уровне энергоэффективности и результативности реализации проектов по экономии энергии [9].

Обсуждение

По предварительным оценкам, ежегодное финансирование в размере 10 миллиардов рублей позволит проводить энергоэффективный капитальный ремонт примерно в 6757 многоквартирных домах. Это создаст возможность ежегодного обновления до 2,2 % жилищного фонда с применением современных энергосберегающих технологий.

Министерство строительства Российской Федерации рассматривает дополнительные меры стимулирования собственников жилья и управляющих организаций к выполнению энергоэффективных ремонтов. Одним из таких инструментов является внедрение энергосервисных контрактов. Также в Государственной Думе обсуждается законопроект, направленный на увеличение количества таких контрактов при капитальном ремонте МКД с 2020 года. Очевидно, что задержка в принятии данного закона замедляет внедрение энергоэффективных решений. Однако даже после его принятия потребуется дальнейшая работа со стороны исполнительных органов власти на федеральном и региональном уровнях. Ряд таких мероприятий на федеральном уровне представлен на рисунке 4, а на местном уровне — на рисунке 5.

Анализ зарубежных практик позволяет сделать выводы о том, что наибольшие масштабы капитального ремонта наблюдаются в странах, где наиболее жёстко законодательно определена ответственность собственников за создание юридического лица (ТСЖ), за оплату текущих платежей и кредитов на капремонт. Кроме того, безусловно огромную стимулирующую роль в осуществлении широкомасштабных энергоэффективных ремонтов играют государственная поддержка и стимулирование. Чем больше господдержка в разных формах, тем больше масштабы ремонтов.

Европейская комиссия предложила ввести минимальные стандарты энергоэффективности для 15 % зданий с наихудшими показателями в Европе, которые будут иметь рейтинг «G» по шкале энергоэффективности ЕС, независимо от того, являются ли они жилыми или нет. В ЕС была принята Директива об энергоэффективности зданий (EPBD), направленная на сокращение вдвое выбросов парниковых газов в ЕС к 2030 г. В директиве делается акцент на зданиях с наихудшими показателями энергоэффективности, и им отдаётся приоритет при реконструкции, что должно помочь борьбе с энергетической неэффективностью. К 1 января 2027 г. все коммерческие или общественные здания должны будут соответствовать как минимум классу «F» по шкале энергоэффективности ЕС, а затем к 1 января 2030 г. — классу «Е». Особенно это актуально становится в настоящее время, после того как разрушение газовых магистралей из России в Европу привело к значительному росту цен на электроэнергию и эксплуатацию домов в Европе [10].

Заключение

Таким образом, недостаточное внимание со стороны органов власти к вопросам энергоэффективных мероприятий и использования новых технологий при капитальном ремонте, задержка принятия нормативных документов, методических рекомендаций и отсутствие информированности граждан сдерживают организацию и проведение таких ремонтов и не способствуют энергосбережению многоквартирных домов в процессе их

СПИСОК ЛИТЕРАТУРЫ

- Жилищный кодекс Российской Федерации: Федеральный закон от 29.12.2004 № 188-ФЗ: редакция от 28.04.2023: принят Государственной Думой 22 декабря 2004 года: одобрен Советом Федерации 24 декабря 2004 года. – Москва, 2004.
- Об утверждении Методических рекомендаций по реализации проектов и мероприятий по энергосбережению и повышению энергетической эффективности при капитальном ремонте общего имущества в многоквартирных домах : Приказ Министерства строительства и жилищно-коммунального хозяйства Российской Федерации от 19 сентября 2016 года № 653/пр / Минстрой России. Официальный сайт Минстроя России minstroyrf.gov.ru, 19.09.2016. URL: https://www.minstroyrf.gov.ru/docs/12692/.
- 3. Об утверждении примерных форм перечня мероприятий, проведение которых в большей степени способствует энергосбережению и повышению эффективности использования энергетических ресурсов в многоквартирном доме: Приказ Министерства строительства и жилищно-коммунального хозяйства Российской Федерации от 15 февраля 2017 года № 98/пр / Минстрой России. Официальный сайт Минстроя России minstroyrf.gov.ru, 15.02.2017. URL: https://www.minstroyrf.gov.ru/docs/13681/.
- 4. Какадий, В. И. Управление системой капитального ремонта многоквартирных домов / В. И. Какадий, И. И. Какадий // Вестник евразийской науки. 2020. Т. 12, № 2. С. 43. URL: https://cyberleninka.ru/article/n/upravlenie-sistemoy-

DEEEDENCES

- 1. Zhilishhnyj kodeks Rossijskoj Federatsii : Federal'nyj zakon ot 29.12.2004 № 188-FZ [Housing Code of the Russian Federation : Federal Law No. 188-FZ of December 29, 2004] : redaktsiya ot 28.04.2023 : prinyat Gosudarstvennoj Dumoj 22 dekabrya 2004 goda : odobren Sovetom Federatsii 24 dekabrya 2004 goda [as amended on December 28, 2023 : adopted by the State Duma on December 22, 2004 : approved by the Federation Council on December 24, 2004]. Moscow, 2004
- 2. Ob utverzhdenii Metodicheskikh rekomendatsij po realizatsii proektov i meropriyatij po ehnergosberezheniyu i povysheniyu ehnergeticheskoj ehffektivnosti pri kapital'nom remonte obshhego imushhestva v mnogokvartirnykh domakh [On approval of Methodological Recommendations for the implementation of projects and measures to save energy and improve energy efficiency during major Repairs of Common Property in Apartment buildings] : Prikaz Ministerstva stroitel'stva i zhilishhno-kommunal'nogo khozyajstva Rossijskoj Federatsii ot 19 sentyabrya 2016 goda № 653/ pr [Order of the Ministry of Construction and Housing and Communal Services of the Russian Federation dated September 19, 2016 No. 653/pr] / Minstroj Rossii [Ministry of Construction of Russia]. - Ofitsial'nyj sajt Minstroya Rossii [The official website of the Ministry of Construction of Russia] minstroyrf.gov.ru, 09/19/2016. - URL: https://www.minstroyrf. gov.ru/docs/12692/.
- Ob utverzhdenii primernykh form perechnya meropriyatij, provedenie kotorykh v bol'shej stepeni sposobstvuet ehnergosberezheniyu i povysheniyu ehffektivnosti

СТРОИТЕЛЬНОЕ ПРОИЗВОДСТВО № 4 (52)'2024

эксплуатации. Отсутствие механизмов стимулирования применения энергоэффективных мероприятий и энергосберегающих технологий усугубляется отсутствием системности мероприятий, направленных на эти цели. Установление обязательных требований о присвоении класса энергоэффективности МКД после капремонта не ниже «С» на законодательном уровне с обязательной бюджетной поддержкой является самым оптимальным решением проблемы.

kapitalnogo-remonta-mnogokvartirnyh-domov.

- Висягина, С. А. Организация энергоэффективного капитального ремонта здания / С. А. Висягина // Молодёжь и XXI век 2020: материалы X Международной молодёжной научной конференции, Курск, 19–20 февраля 2020 года. Курск: Юго-Западный государственный университет, 2020. С. 239–241. URL: https://elibrary.ru/item.asp?id=42500458.
- Давлетшина, Л. А. Статистический анализ капитального ремонта многоквартирных домов, повышающего энергоэффективность зданий / Л. А. Давлетшина, А. В. Безруков // Вестник Государственного университета управления. 2021. № 1. С. 83–90. URL: https://vestnik.guu.ru/jour/article/view/2630?locale=ru RU.
- Руководство по энергоэффективному капитальному ремонту многоквартирных домов / под ред. А. В. Попова, Е. А. Тихомировой. Москва: Дом-инфо, 2019. 176 с.
- О Фонде содействия реформированию жилищно-коммунального хозяйства (с изменениями и дополнениями): Федеральный закон от 21 июля 2007 г. № 185-ФЗ: принят Государственной Думой 6 июля 2007 года: одобрен Советом Федерации 11 июля 2007 года. – Москва, 2007.
- Энергоэффективность жилья / Бюллетень счётной палаты : [электронный ресурс]. – 2023. – № 8 (309). – URL: https://ach. qov.ru/statements/bulletin-sp-8-2023.
- 10. Астафьев, А. С. Опыт проведения капитального ремонта за рубежом / А. С. Астафьев. DOI 10.17150/2411-6262.2023.14(2).619-631 // Baikal Research Journal. 2023. Т. 14, № 2. С. 619–631.
 - ispol'zovaniya ehnergeticheskikh resursov v mnogokvartirnom dome [On approval of the approximate forms of the list of measures that greatly contribute to energy conservation and increase the efficiency of energy resources in an apartment building]: Prikaz Ministerstva stroitel'stva i zhilishhnokommunal'nogo khozyajstva Rossijskoj Federatsii ot 15 fevralya 2017 goda Nº 98/pr [Order of the Ministry of Construction and Housing and Communal Services of the Russian Federation dated February 15, 2017 No. 98/pr] / Minstroj Rossii [Ministry of Construction of Russia]. Ofitsial'nyj sajt Minstroya Rossii [The official website of the Ministry of Construction of Russia] minstroyrf.gov.ru, 02/15/2017. URL: https://www.minstroyrf.gov.ru/docs/13681/.
- Kakady, V. I. Upravlenie sistemoj kapital'nogo remonta mnogokvartirnykh domov [Management of the system of capital repairs of apartment buildings] / V. I. Kakady, I. I. Kakady // Vestnik evrazijskoj nauki [Bulletin of Eurasian Science]. – 2020. – Vol. 12, No. 2. – P. 43. – URL: https:// cyberleninka.ru/article/n/upravlenie-sistemoy-kapitalnogoremonta-mnogokvartirnyh-domov.
- Visyagina, S. A. Organizatsiya ehnergoehffektivnogo kapital'nogo remonta zdaniya [Organization of energy-efficient capital repairs of buildings] / S. A. Visyagina // Molodyozh' i XXI vek 2020: materialy X Mezhdunarodnoj molodyozhnoj nauchnoj konferentsii, Kursk, 19–20 fevralya 2020 goda [Youth and the XXI century 2020: proceedings of the X International Youth Scientific Conference, Kursk, February 19-20, 2020]. Kursk: Yugo-Zapadnyj gosudarstvennyj universitet [Southwestern State University]. 2020. Pp. 239–241. URL: https://elibrary.ru/item.asp?id=42500458.

- 6. Davletshina, L. A. Statisticheskij analiz kapital'nogo remonta mnogokvartirnykh domov, povyshayushhego ehnergoehffektivnost' zdanij [Statistical analysis of capital repairs of apartment buildings that increase the energy efficiency of buildings] / L. A. Davletshina, A. V. Bezrukov // Vestnik Gosudarstvennogo universiteta upravleniya [Bulletin of the State University of Management]. 2021. No. 1. Pp. 83–90. URL: https://vestnik.guu.ru/jour/article/ view/2630?locale=ru RU.
- 7. Rukovodstvo po ehnergoehffektivnomu kapital'nomu remontu mnogokvartirnykh domov [Guidelines for energy-efficient capital repairs of apartment buildings] / edited by A. V. Popova, E. A. Tikhomirova. Moscow: Dom-info, 2019. 176 p.
- 8. O Fonde sodejstviya reformirovaniyu zhilishhnokommunal'nogo khozyajstva (sizmeneniyami i dopolneniyami): Federal'nyj zakon ot 21 iyulya 2007 g. № 185-FZ [On the Fund
- for Assistance to Housing and Communal Services Reform (with amendments and additions): Federal Law No. 185-FZ of July 21, 2007]: prinyat Gosudarstvennoj Dumoj 6 iyulya 2007 goda: odobren Sovetom Federatsii 11 iyulya 2007 goda [adopted by the State Duma on July 6, 2007: approved by the Federation Council on July 11, 2007]. Moscow, 2007.
- 9. Ehnergoehffektivnost' zhil'ya [Energy efficiency of housing] / Byulleten' schyotnoj palaty [Bulletin of the Accounting Chamber]: [electronic resource]. 2023. No. 8 (309). URL: https://ach.gov.ru/statements/bulletin-sp-8-2023.
- Astafyev, A. S. Opyt provedeniya kapital'nogo remonta za rubezhom [The experience of capital repairs abroad] / A. S. Astafyev. – DOI 10.17150/2411-6262.2023.14(2).619-631 // Baikal Research Journal. – 2023. – Vol. 14, No. 2. – Pp. 619–631.

УДК 69.009.1 DOI: 10.54950/26585340_2024_4_112

Этапы выбора экспертной группы для оценки функций технического заказчика при вводе объекта в эксплуатацию

Stages of Selecting an Expert Group to Evaluate the Functions of the Technical Customer When Commissioning a Facility

Топчий Дмитрий Владимирович

Доктор технических наук, доцент, профессор, заведующий кафедрой «Испытания сооружений», ФГБОУ ВО «Национальный исследовательский Московский государственный строительный университет» (НИУ МГСУ), Россия, 129337, Москва, Ярославское шоссе, 26, TopchiyDV@mgsu.ru

Topchiy Dmitriy Vladimirovich

Doctor of Technical Sciences, Associate Professor, Professor, Head of the Department of Testing of Structures, National Research Moscow State University of Civil Engineering (NRU MGSU), Russia, 129337, Moscow, Yaroslavskoe shosse, 26, TopchiyDV@mgsu.ru

Лавреняк Илья Вячеславович

Аспирант кафедры «Испытания сооружений», ФГБОУ ВО «Национальный исследовательский Московский государственный строительный университет» (НИУ МГСУ), Россия, 129337, Москва, Ярославское шоссе, 26, 89636736614@mail.ru

Lavrenyak Ilya Vyacheslavovich

Postgraduate student of the Department of Testing of Structures, National Research Moscow State University of Civil Engineering (NRU MGSU), Russia, 129337, Moscow, Yaroslavskoe shosse, 26, 89636736614@mail.ru

Аннотация. Ввод в эксплуатацию строительного объекта представляет собой критически важный этап, который следует за завершением строительно-монтажных работ, а также ориентированный на качество процесс, повышающий результативность проекта строительства. Одним из ключевых критериев, позволяющих оценить качество ввода в эксплуатацию, является обеспечение интегрированной работы всех инженерных систем. Цель статьи заключается в определении проблематики, установлении рамок и задач экспертного исследования, а также в обосновании состава и количества экспертов для дальнейшей разработки параметрической модели процессов подготовки и ввода объектов в эксплуатацию. Методы исследования: математическое моделирование, систематизация, сравнение, анализ, визуализация, обобщение, прогнозирование.

В процессе исследования разработан алгоритм действия при выборе экспертной группы, которая будет привлекаться для анализа выявленных функций технического заказчика с

Abstract. Commissioning of a construction project is a critical stage that follows the completion of construction and installation works, as well as a quality-oriented process that improves the effectiveness of a construction project. One of the key criteria for assessing the quality of commissioning is ensuring the integrated operation of all engineering systems. The purpose of the article is to define the problems, establish the scope and objectives of the expert study, as well as to justify the composition and number of experts for further development of a parametric model of the

выделением конкретных этапов. Описаны этапы выбора состава экспертной группы, и математически формализован подход к определению необходимого количества экспертов. Отдельный акцент сделан на статистической выборке, описывающей основные критерии цикла строительства. Проведённый анализ позволил прийти к заключению, что на этапе получения разрешения на ввод объекта в эксплуатацию зачастую наблюдается отсутствие необходимого количества комплектов исполнительной документации в архиве заказчика. Кроме того, были выявлены основные риски, связанные с отсутствием унификации организационно-технических мероприятий процесса подготовки к вводу в эксплуатацию строительных объектов, а также их негативные последствия для процесса ввода объектов в эксплуатацию.

Ключевые слова: технический заказчик, передача на баланс, ввод в эксплуатацию, экспертная группа, количество экспертов, исполнительная документация, объект строительства.

processes of preparation and commissioning of objects. Research methods: mathematical modeling, systematization, comparison, analysis, visualization, generalization, forecasting.

In the course of the study, an algorithm of actions was developed for selecting an expert group that will be involved in the analysis of the identified functions of the technical customer with the allocation of specific stages. The stages of selecting the composition of the expert group are described and the approach to determining the required number of experts is mathematically

formalized. Special emphasis is placed on the statistical sample describing the main criteria of the construction cycle. The conducted analysis allowed us to conclude that at the stage of obtaining a permit for commissioning a facility, there is often a lack of the required number of sets of executive documentation in the customer's archive. In addition, the main risks associated with the lack of unification of organizational and technical measures in

Введение

Как показывает практический опыт, задача своевременного ввода в эксплуатацию строительных объектов, передачи объекта на баланс была и остаётся одной из самых актуальных и значимых в строительной отрасли. Важно, чтобы технический заказчик, ответственный за ввод объекта в эксплуатацию, участвовал во всех ключевых процессах начиная со стадии предпроектной и проектной подготовки [1], овладевал всеми необходимыми навыками и выполнял свои обязанности вовремя, соблюдая соответствующие нормативные и юридические требования на всех последующих этапах жизненного цикла строительства.

Процесс ориентирован на проведение освидетельствования и документального оформления, подтверждающего, что все этапы — изыскания, проектирование, строительно-монтажные и пусконаладочные работы, ввод в эксплуатацию объекта, включая инженерные системы, — соответствуют требованиям эксплуатационных служб.

Предварительный анализ научно-технической документации (НТД) для определения базовых функций технического заказчика, необходимых для своевременной и качественной передачи объекта в эксплуатацию, определение этапов жизненного цикла строительства объекта, влияющих на введение объекта в эксплуатацию с распределением базовых функции технического заказчика по данным этапам [2], статистический срез по основным критериям цикла строительства в части организационных процессов приёмки и ввода объекта в эксплуатацию — в основе определения проблематики, рамок и задач экспертного исследования.

На текущем этапе внедрения технологий информационного моделирования для ликвидации расхождения прогнозируемых и фактических сроков передачи на баланс практическую ценность приносит формализация процессов передачи на баланс [3].

Разделение процесса на отдельные этапы и функциональные области, как в части общестроительных работ, так и инженерных систем, позволяет более детально и системно рассмотреть каждый аспект подготовки к вводу объекта в эксплуатацию. При таком подходе возможно чёткое определение последовательности действий, необходимых для успешного завершения процесса. Каждый временной этап и функциональная область становятся более прозрачными и понятными для всех участников процесса, что способствует более эффективному управлению и контролю над процессом.

Основное преимущество такого структурированного подхода заключается в возможности наглядного ориентирования лиц, принимающих решения, на текущие задачи, процессы и функциональные обязанности ответственных исполнителей. Это позволит оперативно выявлять проблемные ситуации, тормозящие факторы или потенциальные риски, которые могут привести к срыву сроков или неэффективной передаче объекта на баланс. Таким образом, структурирование процесса по временным эта-

СТРОИТЕЛЬНОЕ ПРОИЗВОДСТВО № 4 (52)'2024

the process of preparing for the commissioning of construction projects, as well as their negative consequences for the process of commissioning projects, were identified.

Keywords: technical customer, transfer to balance sheet, commissioning, expert group, number of experts, executive documentation, construction project.

пам и функциональным областям способствует повышению прозрачности, эффективности и контроля над процессом подготовки к вводу объекта на баланс.

Научная новизна данной статьи заключается в комплексном подходе к формированию количественного и качественного состава экспертной группы для разработки параметрической модели, учитывающей все аспекты процесса ввода в эксплуатацию. В отличие от существующих исследований, в данной работе осуществляется интеграция процесса ввода в эксплуатацию в общую систему управления строительством, охватывающую все этапы строительства и эксплуатации, а также связанные с ними рабочие процессы. Это позволяет обеспечить более эффективное взаимодействие между участниками проекта и повысить качество подготовки объектов к вводу в эксплуатацию.

Материалы и методы

Систематизация и анализ данных о текущем состоянии и методологических основах процесса приёмки в эксплуатацию зданий, общетеоретические методы познания (синтез, аналогия, обобщение, сопоставление, наблюдение, анализ и др.) позволили определить проблематику, рамки и задачи экспертного исследования, этапы выбора количественного и качественного состава экспертной группы.

Результаты

В ходе исследования авторами были рассмотрены основные аспекты, способствующие сокращению времени ввода объектов в эксплуатацию, и проведён сравнительный анализ различных методов и подходов к решению данной проблемы. Детальный анализ целого ряда работ, посвящённых теме экспертного метода (В. М. Постников, С. Б. Спиридонов [4; 5], Rashid Maqbool, Mohammed Rayan Saiba [6], Carmen Andrade, Lionel Linger [7], В. Л. Рупосов [8], Т. К. Кузьмина, П. В. Большакова, Д. Д. Зуева [9; 10], А. А. Лапидус, А. В. Загорская [11]), применительно к решению поставленной задачи позволил разработать алгоритм действий при выборе экспертной группы и определить конкретные этапы [4] (рисунок 1).

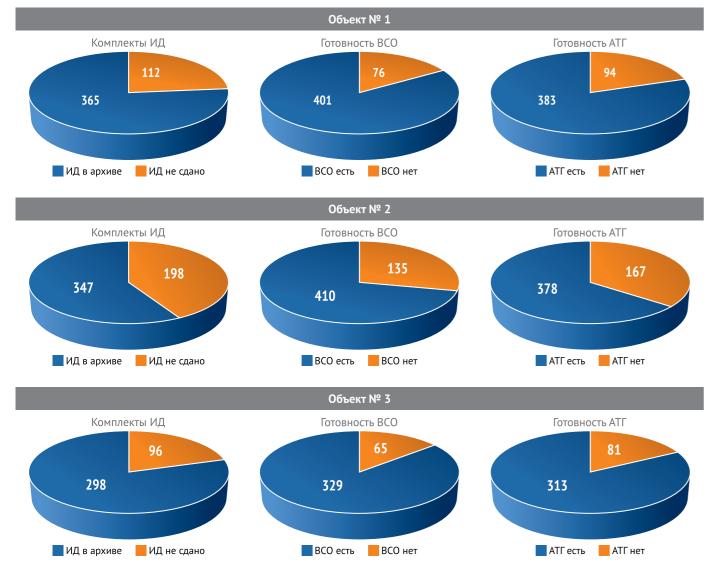
Рис. 1. Основные этапы для разработки алгоритма действий при выборе экспертной группы

Fig. 1. Key steps for developing an action plan when selecting an expert group

Наименование объекта	Объект № 1	Объект № 2	Объект № 3	Объект № 4
Стоимость объекта, млрд руб.	19,83	0,35	6,81	14,2
Дата получения РС	25.06.2013	22.03.2014	14.11.2011	14.02.2013
Проектная дата получения РВ	13.12.2016	30.12.2016	21.12.2012	26.12.2019
Дата сдачи ИД в архив заказчика	12.11.2021	не передано	15.04.2019	не передано
Дата подписания формы КС-14	не подписано	не подписано	17.04.2023	не подписано

Табл. 1. Статистический срез по основным критериям цикла строительства **Таb. 1.** Statistical cross-section by main criteria of the construction cycle

Далее рассмотрим эти этапы более детально, сосредоточив внимание на конкретных решаемых задачах, связанных с обеспечением процесса реализации метода экспертных оценок, применяемого для анализа функций технического заказчика, которые были выявлены в ходе исследования.


Этап 1. Определение проблематики, рамок и задач экспертного исследования.

В настоящее время отсутствуют унифицированный нормативно-правовой порядок и чёткая методика проведения процесса подготовки к вводу в эксплуатацию строительных объектов на всех этапах их жизненного цикла.

Каждая строительная организация вынуждена разрабатывать собственные внутренние регламенты и процедуры, опираясь на знания требований НТД, накопленный профессиональный опыт сотрудников, полученный при реализации аналогичных строительных проектов и имеющиеся ресурсы [10], как в области общестроительных работ, так и в части инженерных систем, с учётом специфики каждого конкретного проекта и условий его строительства.

Несмотря на наличие теоретических знаний о применении необходимых подходов и методов, направленных на обеспечение более эффективной и своевременной подготовки к вводу в эксплуатацию строительных объектов, на практике организации строительного комплекса не применяют в совокупности данные методы или применяют их несвоевременно, к контрольным срокам ввода объектов в эксплуатацию подходят с различной степенью готовности.

Практика показывает, что даже выполнение отдельных функций и методов, связанных с эффективной и

Рис. 2. Анализ готовности исполнительной документации на проектную дату получения разрешения на ввод **Fig. 2.** Analysis of the readiness of executive documentation on the design date of obtaining a permit for commissioning

своевременной подготовкой к вводу в эксплуатацию, не приведёт к желаемым результатам, если они не интегрированы в единый процесс на всех стадиях жизненного цикла строительного объекта. Это зачастую приводит к срыву сроков передачи строительного объекта на баланс эксплуатирующей организации.

Применение технологии информационного моделирования и специализированных программных комплексов в рамках структурированной системы управления проектами, планирования и контроля работ для задач подготовки ввода в эксплуатацию демонстрирует положительный эффект при условии выстроенных процессов обмена информацией между участниками строительного производства и подразделениями, осуществляющими подготовку объекта к эксплуатации.

Для достижения этих целей необходимо разработать и унифицировать стандарты и процедуры подготовки к вводу в эксплуатацию, а также регулярно проводить внутренние и внешние проверки, аудиты качества выполнения работ. Это позволит контролировать и устранять возможные ошибки на самых ранних этапах жизненного цикла объекта.

Исследование статистических данных, относящихся к процессам приёмки и ввода объектов в эксплуатацию, проведённое с участием одного из ведущих технических заказчиков Российской Федерации, выявило значительные временные и трудовые затраты на этапе передачи строительного объекта на баланс эксплуатирующей организации.

Анализ статистических данных позволяет сделать вывод о том, что этап ввода объекта в эксплуатацию, завершающийся подписанием формы КС-14, требует значительно больше времени, чем этап строительства объекта (таблица 1).

Выборка данных проводилась на основе информации о 15 действующих объектах технического заказчика и охватывает объекты с различной стоимостью. Это позволяет продемонстрировать, что масштаб объекта не оказывает значительного влияния на общую картину сроков подписания формы КС-14. Также в выборку включены объекты, прошедшие все этапы строительства с 2011 года.

Рассматривая завершённый объект № 3, можно рассчитать сроки основных этапов строительства. Принимая за начальную точку дату получения разрешения на строительство, можно установить, что фактический срок строительства составил чуть более одного года. Исполнительная документация была сдана в архив спустя 7 лет, а процесс подписания формы КС-14 затянулся на 11 лет после проектной даты разрешения на ввод.

Следует отметить, что специалисты различных организаций со значительным опытом подготовки объектов к вводу в эксплуатацию в процессе обсуждения данной проблематики указывают на то, что устранение замечаний, выявленных рабочими комиссиями и эксплуатационными службами после получения разрешения на ввод, в среднем занимает от 1,5 до 2 лет.

Одной из важных целей на этапе ввода объекта в эксплуатацию является снижение эксплуатационных расходов путём обеспечения эффективного функционирования инженерных систем. Особое внимание было обращено на проверку и передачу исполнительной документации по инженерным системам эксплуатационным службам.

СТРОИТЕЛЬНОЕ ПРОИЗВОДСТВО № 4 (52)'2024

На проектную дату получения разрешения на ввод объекта в эксплуатацию часто недостаёт необходимого количества исполнительной документации в архиве заказчика (рисунок 2).

Особое внимание следует уделить ключевым документам, таким как ведомость смонтированного оборудования (ВСО) и акт технической готовности (АТГ), в контексте исполнительной документации инженерных систем. На основе анализа их готовности на момент получения ЗОС и разрешения на ввод (РВ) рекомендуется акцентировать внимание на своевременной подготовке указанных документов.

Для сокращения времени устранения замечаний и повышения эффективности данного процесса необходимо разработать системные организационно-технические мероприятия (ОТМ) на всех этапах жизненного цикла объектов капитального строительства [2].

Отсутствие унифицированных ОТМ процесса подготовки к вводу в эксплуатацию строительных объектов приводит к следующим проблемам на этапах строительства и эксплуатации и связанных с ними рабочих процессов:

- 1. **Неоднозначность процедур.** Различное понимание требований и процедур подготовки к вводу в эксплуатацию объектов со стороны различных строительных организаций может привести к неоднозначности и неполноте выполнения необходимых мероприятий.
- 2. **Несогласованность работ.** Отсутствие алгоритма действий с соблюдением требований стандартов и регламентов может привести к неправильной координации работ между участниками процесса, что может выливаться в конфликты, задержки и ошибки.
- 3. **Низкое качество подготовки.** Без чётких нормативов и стандартов сотрудники могут не иметь ясного представления о необходимых шагах и критериях подготовки, что может привести к недостаточному качеству и безопасности объекта.
- Увеличение рисков. Недостаточное внимание к процессу подготовки к вводу в эксплуатацию из-за отсутствия унифицированных нормативов может привести к увеличению рисков возникновения аварийных ситуаций и проблем в работе объекта.
- 5. **Несоблюдение требований.** Без ясных норм и стандартов существует вероятность несоблюдения требований НТД и других нормативных актов, что может привести к нарушениям законодательства и правил безопасности.

В целом, отсутствие унифицированных ОТМ процесса подготовки к вводу в эксплуатацию строительных объектов может существенно затруднить процесс и повлечь за собой серьёзные проблемы, включая финансовые и репутационные потери.

При этом стоит отметить, что при переходе на информационное моделирование цифровизации подверглось прежде всего прохождение административных процедур [1].

Использование современных информационных технологий, в частности, технологий информационного моделирования зданий (ВІМ), предоставляет возможность эффективно моделировать процессы строительства на

вания, строительства и эксплуатации, обеспечивая более высокий уровень координации между участниками проекта и сокращая время на его реализацию и ввод в эксплуатацию [12].

Тем не менее, исходя из накопленного опыта проектирования крупных объектов, следует отметить, что не все разделы проектной документации охватываются ВІМмоделированием [13]. Это может быть обусловлено несколькими факторами.

Во-первых, некоторые специализированные области проектирования, такие как «Проект организации строительства» (ПОС), могут не всегда быть интегрированы в единую ВІМ-модель, что приводит к недостаточной координации и возможным ошибкам на этапе строительства.

Во-вторых, отсутствие стандартизации в подходах к ВІМ-моделированию и недостаточная квалификация специалистов также могут ограничивать полное применение этой технологии. В результате, несмотря на очевидные преимущества, ВІМ-моделирование не всегда охватывает все необходимые аспекты проектирования (в том числе классификацию элементов), что может негативно сказаться на качестве и эффективности ввода объекта в эксплуатацию.

Дальнейшая задача – изучить и обеспечить процесс выполнения метода экспертных оценок для анализа выявленных функций технического заказчика, с учётом определённой проблематики процесса подготовки к вводу в эксплуатацию, что позволит:

- ускорить процесс ввода объекта в эксплуатацию;
- эффективно использовать рабочие ресурсы на всех этапах жизненного цикла;
- повысить качество разработки проектной, исполнительной и сметной документации для эксплуатационных служб;
- оптимизировать штат производственно-технического блока в зависимости от нужд строящихся объектов, учитывая соотношение специалистов общестроительных и инженерных систем;
- улучшить организацию документации по инженерным системам, что требует привлечения специалистов различной квалификации и может занимать больше времени из-за объёмных оформительских работ.

Этап 2. Выбор количественного состава экспертной группы.

Одним из первостепенных вопросов, возникающих при принятии решения об использовании метода экспертных оценок, является вопрос выбора оптимального количества экспертов.

Существуют разнообразные подходы к определению необходимого количества экспертов, подходящие под различные научные задачи.

Для определения количества экспертов В. М. Постников при анализе подходов к формированию состава экспертной группы, ориентированной на подготовку и принятие решений [4], предлагает общий упрощённый, модифицированный вариант концептуального подхода, позволяющий отход от достаточно трудоёмкого ранее применяемого использования теории вероятности и математической статистики.

Для достоверности результатов необходимо определить минимальное число экспертов, при котором результаты экспертной оценки можно признать надёжными, соответствующими цели исследования. Изучен подробный анализ ключевых научных положений и концепций при выборе оптимального количества экспертов, универсальный алгоритм применения метода экспертной оценки в научном исследовании [11].

В процессе ранжирования объектов используется математическое неравенство, позволяющее выявить достаточное количество экспертов и включающее коэффициент конкордации Кендалла (W), обозначающий согласованность мнений экспертов.

$$W = \frac{12\sum_{i=1}^{n}D_{i}^{2}}{m^{2}(n^{3}-n)},$$

где m — количество экспертов;

n — количество ранжируемых объектов;

D — дисперсия отклонений от среднего.

$$W \times m \times (n-1) > X_T^2$$
.

При минимальном значении коэффициента конкордации 0,5 и значении n и X_{τ}^{2} (табличное значение критерия Пирсона) формулируются неравенства, на основе которых рассчитывается минимальное количество необходимых экспертов для ранжирования объектов в зависимости от числа ранжируемых объектов (таблица 2) [14]:

$$m > \frac{2 \times X_T^2}{(n-1)}.$$

Правильно подобранное число экспертов способствует устойчивому, надёжному и качественному ранжированию факторов, обеспечивая при этом адекватность и объективность исследования.

На сегодняшний день с развитием средств автоматизации и информационных технологий увеличение количества экспертов не представляет значительных сложностей в обработке результатов ранжирования. Модернизированные алгоритмы и программные решения способны эффективно обрабатывать большие объёмы данных, получаемых от множества экспертов. Автоматизированные средства позволяют легко интегрировать и анализировать множество экспертных оценок, обеспечивая высокую скорость и точность обработки информации. Благодаря этому расширение числа экспертов приводит к обогащению данных и повышению объективности результатов без значительного увеличения трудозатрат на их обработку. Такой подход позволяет эффективно использовать множественные экспертные мнения для получения более

Количество ранжируемых объектов (п)	Табличное значение критерия Пирсона (X_{τ}^2) (при α = 0,05)	Минимальное количество экспертов (<i>m</i>)
2	6,6	14
3	9,2	10
4	11,3	8
5-6	13,3-15,1	7
7-9	16,8-20,1	6
10-16	21,7-30,6	5
17-31	32-50,94	4

Табл. 2. Минимальное количество экспертов **Tab. 2.** Minimum number of experts

Рис. 3. Аспекты подбора состава экспертной группы Fig. 3. Aspects of selecting the composition of the expert group

точных и достоверных выводов при ранжировании объек-

Этап 3. Выбор качественного состава экспертной группы.

Учитывая тот факт, что задача уменьшения времени ввода объектов в эксплуатацию охватывает все этапы жизненного цикла объекта строительства и зависит от большого количества функций технического заказчика, то выбор состава экспертной группы, подготовку окончательного списка экспертов следует рассматривать как многоэтапный процесс [2].

Вопрос качественного состава экспертной группы с учётом специфики строительной отрасли можно решить, разделив экспертов по основным направлениям производственной деятельности, основываясь на практическом опыте крупного технического заказчика в решении вопросов ввода в эксплуатацию за период с 2012 по 2024 гг. Например, опыт показывает, что к сокращению сроков ввода объекта в эксплуатацию приводит заблаговременная подготовка к передаче на баланс как в части общестроительных вопросов, так и инженерных систем. Учитывая разнообразие задач и подходов в различных сферах производственной деятельности, включение в анкету вопросов, касающихся специфики определённых направлений производства обеспечит более объективное и учитывающее мнение группы экспертов.

При формировании высококвалифицированного состава экспертов следует рассмотреть следующие дополнительные аспекты (рисунок 3).

Так как рассматривается весь жизненный цикл строительства, целесообразно в опросных анкетах разделить профессиональные мнения экспертов по проектным вопросам и вопросам строительного производства, соответственно, по принадлежности экспертов к реестрам НОПРИЗ и НОСТРОЙ.

СПИСОК ЛИТЕРАТУРЫ

- 1. Большакова, П. В. Внедрение методики выбора рациональных организационно-технологических решений на этапах предпроектной и проектной подготовки объекта к строительству / П. В. Большакова // Инженерный вестник Дона. -2023. - № 4 (100). - C. 343-358.
- 2. Распределение основных функций технического заказчика по этапам жизненного цикла строительства объекта / Д. В. Топчий, А. Я. Токарский, И. В. Лавреняк, А. А. Газдаров // Строительное производство. – 2024. – № 1. – С. 70–75.
- 3. Building Information Modelling- (BIM-) Based Generative Design for Drywall Installation Planning in Prefabricated Construction / J. D. C. Lobo, Z. Lei, H. Liu, H. X. Li, S Han. - DOI 10.1155/2021/6638236 // Advances in Civil Engineering. -2021. - Vol. 2021, Iss. 1.

Исследовательская анкета включает в себя следующие разделы:

- 1. Опрос № 1.1. Формирование перечня факторов для специалистов из реестра НОПРИЗ.
- 2. Опрос № 1.2. Формирование перечня факторов для специалистов из реестра НОСТРОЙ.
- 3. Опрос № 2.1. Назначение синаптических весов факторов для специалистов из реестра НОПРИЗ.
- 4. Опрос № 2.2. Назначение синаптических весов факторов для специалистов из реестра НОСТРОЙ.

Каждый опрос будет включать как общие вопросы, касающиеся уровня профессионального опыта респондентов и сферы их деятельности, так и специфические вопросы, направленные на выявление перечня факторов.

Опрос среди экспертов даёт возможность выявления возможных пробелов в информации, определения дополнительных параметров и установления объективных критериев успешной реализации процессов.

Заключение

В результате проведённой работы были определены проблематика, рамки и задачи экспертного исследования, обоснованы расчёт количества экспертов и определение качественного состава экспертной группы с целью установления чётких и структурированных алгоритмов подготовки и приёмки объекта в эксплуатацию.

Дальнейшим шагом станет разработка параметрической модели, которая позволит адаптировать процессы подготовки к вводу объектов в эксплуатацию к специфике различных проектов, обеспечивая согласованность действий всех участников. Кроме того, данная модель может быть применена при сопровождении строительных проектов на всех этапах жизненного цикла объекта строи-

- 4. Постников, В. М. Анализ подходов к формированию состава экспертной группы, ориентированной на подготовку и принятие решений / В. М. Постников // Машиностроение и компьютерные технологии. – 2012. – № 05. – С. 23.
- Постников, В. М. Подход к увеличению уровня согласованности мнений экспертов при выборе варианта развития системы обработки информации / В. М. Постников, С. Б. Спиридонов // Машиностроение и компьютерные технологии. -2013. - № 06. - C. 333-350.
- 6. The influence of industrial attitudes and behaviours in adopting sustainable construction practices / R. Magbool, M. R. Saiba, A. Altuwaim, Y. Rashid, S. Ashfaq. - DOI 10.1002/ sd.2428 // Sustainable Development. - 2022. - Vol. 31, Iss. 2. -Pn. 893-907
- 7. Andrade, C. Verification of durability of new and existing

- structures through the design, construction and operational phases/C.Andrade, L. Linger. DOI 10.1002/suco.202201177// Structural Concrete. 2023. Vol. 24, Iss. 4. Pp. 4377–4386.
- Рупосов, В. Л. Методы определения количества экспертов / В. Л. Рупосов // iPolytech Journal. 2015. № 3 (98). C. 286–292.
- 9. Кузьмина, Т. К. Выявление усредненных временных параметров прохождения процедур на этапе предпроектной и проектной подготовки объекта к строительству / Т. К. Кузьмина, П. В. Большакова, Д. Д. Зуева // Инженерный вестник Дона. 2021. № 4. С. 456–465.
- 10. Кузьмина, Т. К. Моделирование во времени процедур на этапе подготовки объекта к строительству. Построение базовой организационно-управленческой модели / Т. К. Кузьмина, П. В. Большакова, Д. Д. Зуева // Инженерный вестник Дона. 2021. № 5 (77). С. 414–423.
- 11. Загорская, А. В. Применение методов экспертной оценки в научном исследовании. Необходимое количество экспер-

REFERENCES

- Bolshakova, P. V. Vnedrenie metodiki vybora racional'nykh organizatsionno-tehnologicheskkih reshenij na ehtapakh predproektnoj i proektnoj podgotovki ob''ekta k stroitel'stvu [Implementation of the methodology for selecting rational organizational and technological solutions at the stages of pre-project and design preparation of a facility for construction] / P. V. Bolshakova // Inzhenernyj vestnik Dona [Engineering Bulletin of the Don]. – 2023. – No. 4 (100). – Pp. 343–358.
- Raspredelenie osnovnykh funktsij tekhnicheskogo zakazchika po ehtapam zhiznennogo tsikla stroitel'stva ob''ekta [Distribution of the main functions of the technical customer by stages of the life cycle of the construction of the facility] / D. V. Topchy, A. Ya. Tokarsky, I. V. Lavrenyak, A. A. Gazdarov // Stroitel'noe proizvodstvo [Construction production]. – 2024. – No. 1. – Pp. 70–75.
- 3. Building Information Modelling- (BIM-) Based Generative Design for Drywall Installation Planning in Prefabricated Construction / J. D. C. Lobo, Z. Lei, H. Liu, H. X. Li, S Han. DOI 10.1155/2021/6638236 // Advances in Civil Engineering. 2021. Vol. 2021, Iss. 1.
- 4. Postnikov, V. M. Analiz podkhodov k formirovaniyu sostava ehkspertnoj gruppy, orientirovannoj na podgotovku i prinyatie reshenij [Analysis of approaches to the formation of the composition of the expert group focused on the preparation and decision-making] / V. M. Postnikov // Mashinostroenie i komp'juternye tehnologii [Mechanical Engineering and Computer Technologies]. 2012. No. 05. P. 23.
- Postnikov, V. M. Podkhod k uvelicheniyu urovnya soglasovannosti mnenij ehkspertov pri vybore varianta razvitiya sistemy obrabotki informatsii [Approach to increasing the level of consistency of expert opinions when choosing an option for developing an information processing system] / V. M. Postnikov, S. B. Spiridonov // Mashinostroenie i komp'yuternye tekhnologii [Mechanical Engineering and Computer Technologies]. – 2013. – No. 06. – Pp. 333–350.
- The influence of industrial attitudes and behaviours in adopting sustainable construction practices / R. Maqbool, M. R. Saiba, A. Altuwaim, Y. Rashid, S. Ashfaq. – DOI 10.1002/ sd.2428 // Sustainable Development. – 2022. – Vol. 31, Iss. 2. – Pp. 893–907.
- 7. Andrade, C. Verification of durability of new and existing structures through the design, construction and operational phases / C.Andrade, L. Linger. DOI 10.1002/suco.202201177// Structural Concrete. 2023. Vol. 24, Iss. 4. Pp. 4377–4386.
- 8. Ruposov, V. L. Metody opredeleniya kolichestva ehkspertov

- тов / А. В. Загорская, А. А. Лапидус // Строительное производство. 2020. № 3. С. 21–34.
- 12. Facility life cycle management during operation with application of an information model / B. B. Khrustalev, A. A. Kargin, A. A. Kargina, N. I. Korolev, S. V. Zakharov. DOI 10.1051/e3sconf/202453502017 // E3S Web of Conferences: XIII International Scientific and Practical Forum "Environmental Aspects of Sustainability of Construction and Management of Urban Real Estate" (ESCM-2024). 2024. Vol. 535. Art. 02017.
- 13. Познахирко, Т. Ю. Особенности внедрения ВІМ в процесс разработки проектной документации / Т. Ю. Познахирко, Д. В. Топчий // Строительное производство. 2020. № 1. С. 69–72.
- 14. Большакова, П. В. Выбор рациональных решений на этапах предпроектной и проектной подготовки объектов к строительству: дисс. ... канд. техн. наук: 2.1.7 / Большакова Полина Владимировна. Москва, 2022. 51 с.
 - [Methods for determining the number of experts] / V. L. Ruposov // iPolytech Journal. 2015. No. 3 (98). Pp. 286–292.
- Kuzmina, T. K. Vyyavlenie usrednennykh vremennykh parametrov prokhozhdeniya protsedur na ehtape predproektnoj i proektnoj podgotovki ob'ekta k stroitel'stvu [Identification of average time parameters for passing procedures at the stage of pre-project and design preparation of an object for construction] / T. K. Kuzmina, P. V. Bolshakova, D. D. Zueva // Inzhenernyj vestnik Dona [Engineering Bulletin of the Don]. – 2021. – No. 4. – Pp. 456–465.
- 10. Kuzmina, T. K. Modelirovanie vo vremeni protsedur na ehtape podgotovki ob'ekta k stroitel'stvu. Postroenie bazovoj organizatsionno-upravlencheskoj modeli [Time modeling of procedures at the stage of preparing an object for construction. Construction of a basic organizational and managerial model] / T.K. Kuzmina, P.V. Bolshakova, D. D. Zueva // Inzhenernyj vestnik Dona [Engineering Bulletin of the Don]. – 2021. – Vol. 5 (77). – Pp. 414–423.
- 11. Zagorskaya, A. V. Primenenie metodov ehkspertnoj otsenki v nauchnom issledovanii. Neobkhodimoe kolichestvo ehkspertov [Application of expert assessment methods in scientific research. The required number of experts] / A. V. Zagorskaya, A. A. Lapidus // Stroitel'noe proizvodstvo [Construction production]. 2020. Vol. 3. Pp. 21–34.
- 12. Facility life cycle management during operation with application of an information model / B. B. Khrustalev, A. A. Kargin, A. A. Kargina, N. I. Korolev, S. V. Zakharov. DOI 10.1051/e3sconf/202453502017 // E3S Web of Conferences: XIII International Scientific and Practical Forum "Environmental Aspects of Sustainability of Construction and Management of Urban Real Estate" (ESCM-2024). 2024. Vol. 535. Art. 02017.
- 13. Poznakhirko, T. Y. Osobennosti vnedreniya BIM v protsess razrabotki proektnoi dokumentatsii [Features of BIM implementation in the process of developing design documentation] / T. Y. Poznahirko, D. V. Topchiy // Stroitel'noe proizvodstvo [Construction production]. 2020. No. 1. Pp. 69–72.
- 14. Bolshakova, P. V. Vybor ratsional'nykh reshenij na ehtapakh predproektnoj i proektnoj podgotovki ob"ektov k stroitel'stvu [Selection of rational solutions at the stages of pre-project and project preparation of facilities for construction]: diss. ... kand. tekhn. nauk [diss. ... Candidate of Technical Sciences]: 2.1.7 / Bolshakova Polina Vladimirovna. Moscow, 2022. 51 p.

УДК 69.05 DOI: 10.54950/26585340 2024 4 119

Моделирование в BPMN и расчёт продолжительности подготовительных процедур для проведения капитального ремонта МКД

Modeling in BPMN and Calculation of the Duration of Preparatory Procedures for Capital Repairs of Apartment Buildings

Кузьмина Татьяна Константиновна

Кандидат технических наук, доцент, доцент кафедры «Технологии и организация строительного производства», ФГБОУ ВО «Национальный исследовательский Московский государственный строительный университет» (НИУ МГСУ), Россия, 129337, Москва, Ярославское шоссе, 26, kyzmina tk@mail.ru

Kuzmina Tatiana Konstantinovna

Candidate of Engineering Sciences, Associate Professor, Associate Professor of the Department of Technologies and Organization of Construction Production, National Research Moscow State University of Civil Engineering (NRU MGSU), Russia, 129337, Moscow, Yaroslavskoe shosse, 26, kyzmina tk@mail.ru

Бабушкина Диана Дмитриевна

Аспирант, старший преподаватель кафедры «Технологии и организация строительного производства», ФГБОУ ВО «Национальный исследовательский Московский государственный строительный университет» (НИУ МГСУ), Россия, 129337, Москва, Ярославское шоссе, 26, babushkinadd@mgsu.ru

Babushkina Diana Dmitrievna

Postgraduate student, Senior Lecturer of the Department of Technologies and Organization of Construction Production, National Research Moscow State University of Civil Engineering (NRU MGSU), Russia, 129337, Moscow, Yaroslavskoe shosse, 26, babushkinadd@mgsu.ru

Тихомирова Виктория Юрьевна

Студент, ФГБОУ ВО «Национальный исследовательский Московский государственный строительный университет» (НИУ МГСУ), Россия, 129337, Москва, Ярославское шоссе, 26

Tikhomirova Victoria Yurievna

Student, National Research Moscow State University of Civil Engineering (NRU MGSU), Russia, 129337, Moscow, Yaroslavskoe shosse, 26

Валяев Алексей Игоревич

Студент, ФГБОУ ВО «Национальный исследовательский Московский государственный строительный университет» (НИУ МГСУ), Россия, 129337, Москва, Ярославское шоссе, 26

Valyaev Aleksey Igorevich

Student, National Research Moscow State University of Civil Engineering (NRU MGSU), Russia, 129337, Moscow, Yaroslavskoe shosse, 26

Сухоруков Алексей Евгеньевич

Студент, ФГБОУ ВО «Национальный исследовательский Московский государственный строительный университет» (НИУ МГСУ), Россия, 129337, Москва, Ярославское шоссе, 26

Sukhorukov Aleksey Evgenievich

Student, National Research Moscow State University of Civil Engineering (NRU MGSU), Russia, 129337, Moscow, Yaroslavskoe shosse, 26

Аннотация. В ходе анализа региональных программ капитального ремонта в 85 субъектах Российской Федерации и последующего формирования краткосрочных планов реализации выявлен существенный пробел, связанный с отсутствием учёта подготовительных процедур для многоквартирных домов. Возникновение подготовительных процедур, необходимых для проведения капитального ремонта, не позволяет выполнить краткосрочные планы. Подготовительные процедуры возникают в случаях, когда не соблюдаются критерии очерёдности, установленные для включения домов в региональные программы. Одним из таких критериев является наличие проектной документации, если её разработка обязательна.

В рамках исследования рассматривается процедура по подготовке к тендеру на разработку проектной документации на проведение работ по капитальному ремонту многоквартирных

домов. Основная цель работы заключается в определении продолжительности выполнения данной процедуры и разработке модели взаимодействия участников процесса на этапах подготовки. Оценка продолжительности процедуры выполнена на основе анализа нормативно-правовой базы и законодательных актов. Моделирование взаимодействия участников осуществлено с использованием ВРМN-нотации, что позволило визуализировать и структурировать процессы.

Полученные расчёты подтвердили необходимость учёта рассматриваемой процедуры подготовки к проведению капитального ремонта многоквартирного дома при формировании краткосрочных планов.

Ключевые слова: капитальный ремонт, региональная программа, краткосрочный план, критерии очерёдности, проектная документация, тендер.

Abstract. The analysis of regional capital repair programs in 85 constituent entities of the Russian Federation and the subsequent formation of short-term implementation plans revealed a significant gap related to the lack of consideration of preparatory procedures for apartment buildings. The emergence of procedures necessary for capital repairs does not allow to fulfill the short-term plans. Preparatory procedures arise in cases when the priority criteria established for inclusion of buildings in the regional programs are not met. One of such criteria is the availability of project documentation, if its development is mandatory.

The study considers the procedure for preparing for a tender for the development of design documentation for capital repair of apartment buildings. The main objective of the work is to deter-

Введение

Капитальный ремонт многоквартирных домов (МКД) – одна из важнейших отраслей строительства, которая направлена на улучшение состояния, повышение энергоэффективности и продление срока службы здания [1]. За последние несколько лет увеличилось внимание к качеству проведения капитального ремонта. В Российской Федерации данный процесс регулируется рядом законодательных актов и направлен на восстановление конструктивных элементов и инженерных систем.

Региональная программа, разработанная и утверждённая во всех субъектах Российской Федерации (РФ), один из основных нормативно-правовых документов, регламентирующих реализацию капитального ремонта. Основной целью составления региональной программы является формирование очерёдности проведения работ по капитальному ремонту многоквартирных домов (очерёдность) [2]. Для установления очерёдности как показатели, позволяющие произвести оценку потребности и установить очерёдность проведения капитального ремонта, принимаются критерии определения очерёдности [3].

Существующий подход к определению очерёдности проведения капитального ремонта с использованием критериев очерёдности формируется из двух основных параметров: оценки технического состояния МКД и экономический обеспеченности. В ходе предыдущих исследований установлено, что в ряде субъектов в региональных программах так же существуют критерии очерёдности, учитывающие готовность МКД к проведению капитального ремонта. В результате анализа региональных программ

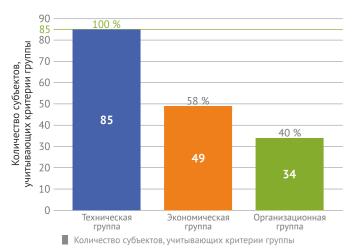


Рис. 1. Статистика учёта в региональной программе критериев очерёдности из установленных групп критериев Fig. 1. Statistics of priority criteria accounting in the regional

program from the established groups of criteria

interaction between the participants of the process at the stages of preparation. The estimation of the procedure duration is made on the basis of the analysis of the legal framework and legislative acts. Modeling of interaction of participants was carried out using BPMN-notation, which allowed to visualize and structure the processes.

The obtained calculations confirmed the need to take into account the considered procedure of preparation for capital repair of an apartment building in the formation of short-term plans.

mine the timeframe of this procedure and to develop a model of

Keywords: capital repair, regional program, short-term plan, priority criteria, project documentation, tender.

субъектов РФ установлено три группы критериев очерёд-

- Техническая группа оценка технического состоя-
- Экономическая группа экономическая обеспеченность капитального ремонта МКД;
- Организационная группа готовность МКД к проведению капитального ремонта.

И несмотря на то, что очерёдность формируется для планирования проведения капитального ремонта во времени, критерии очерёдности организационной группы учтены в 34 субъектах РФ, что составляет 40 % от общего числа субъектов (85 субъектов). На рисунке 1 приведена статистика по количеству субъектов РФ, учитывающих в региональной программе один и более критериев очерёдности из установленных групп критериев.

Сформировано предположение, что если для планирования общей очерёдности весомость организационной группы критериев меньше технической и экономической групп является логичной и рациональной, то при формировании краткосрочного плана организационную группу критериев необходимо учитывать в первую очередь.

В практике существует риск возникновения ситуации, когда в краткосрочный план, разрабатываемый на 3 года, включают МКД с высокой потребностью в проведении капитального ремонта по оценке технической и экономической группам критериев, но из-за невыполнимости критериев очерёдности и прочих неучтённых организационных моментов возникают подготовительные процедуры, необходимость выполнения которых смещает сроки реализации капитального ремонта рассматриваемого МКД или вовсе не позволяет выполнить капитальный ремонт в рамках краткосрочного плана [5].

Целесообразно на примере невыполнения одного из критериев очерёдности рассмотреть содержание подготовительной процедуры с определением продолжительности её выполнения и визуализацией процессов на этапах выполняемой процедуры.

Наиболее встречающийся критерий очерёдности организационной группы – наличие проектной документации в случае, если её подготовка необходима, в соответствии с законодательством Российской Федерации о градостроительной деятельности [4].

В случае невыполнимости критерия возникает необходимость выполнения подготовительной процедуры, а именно – разработки проектной документации (ПД) в случае, если её подготовка необходима. Предшествуют процедуре по разработке ПД процедуры по подготовке к проведению тендера на разработку ПД на проведение ра-

Рис. 2. Схема этапов подготовки к проведению капитального ремонта процедуры при необходимости подготовки ПД Fig. 2. Scheme of stages of preparation for capital repair of the procedure if it is necessary to prepare project documentation

бот по капитальному ремонту МКД и проведению тенде-

Продолжительность выполнения процедур по подготовке к проведению капитального ремонта влияет на сроки реализации региональной программы капитального ремонта МКД. Хотя процесс проведения тендера строго регулируется нормативно-правовыми актами, подготовительные этапы к организации тендера на разработку проектной документации на проведение работ по капитальному ремонту МКД не имеют чётких регламентов, что делает их продолжительность неопределённой и трудноизмеримой.

Целью статьи является ориентировочное определение продолжительности выполнения процедуры по подготовке к проведению тендера на разработку ПД на проведение работ по капитальному ремонту МКД и разработка модели взаимодействия участников процесса на этапах рассматриваемой процедуры.

Материалы и методы

Посредством анализа нормативно-правовой базы и законодательных актов, регулирующих процесс капитального ремонта [6–13], определены участники капитального ремонта и установлены этапы процедуры по подготовке к проведению тендера на разработку ПД на проведение работ по капитальному ремонту МКД.

Граничными этапами рассматриваемой процедуры по подготовке к проведению тендера на разработку ПД на проведение работ по капитальному ремонту МКД приня-

- начальный подача заявки на включение МКД в программу Фонда капитального ремонта (ФКР);
- завершающий подготовка документации на проведение тендера на разработку проектной докумен-

Разработана модель взаимодействия участников процесса на этапах процедуры по подготовке к проведению тендера на разработку ПД на проведение работ по капитальному ремонту МКД с использованием ВРММнотации, позволяющей детально понять и структурировать процессы взаимосвязи всех организаций.

Результаты

Установлены 7 этапов процедуры по подготовке к проведению тендера на разработку ПД на проведение работ по капитальному ремонту МКД:

- 1. Подача заявления на проведение капитального ремонта;
- 2. Выбор технического заказчика;
- 3. Рассмотрение заявки и формирование работ;
- 4. Финансирование и включение в программу ФКР;
- 5. Разработка технического задания;
- 6. Согласование технического задания;
- 7. Подготовка документации для проведения тендера. Результаты анализа этапов процедуры по подготовке к проведению тендера на разработку ПД на проведение ра-

бот по капитальному ремонту МКД структурированы по следующей форме:

- Наименование этапа.
- Организация: участник капительного строительства.
- Описание процессов взаимодействия.
- Документация: документация, разработанная на рассматриваемом этапе.
- Сроки: продолжительность выполнения рассматриваемого этапа.

Структурированные результаты анализа этапов:

1. Подача заявления на проведение капитального ремонта [6; 14–15].

Организация: управляющая компания.

Управляющая компания отправляет заявку на проведение капитального ремонта МКД в органы местного самоуправления. К заявлению прикрепляет отчёт о состоянии дома, фотографии дефектов, технические данные, а также жалобы от самих жильцов.

Документация: заявление на проведение капиталь-

Сроки: разработка и подача заявления занимает от 2 недель до 1 месяца.

2. Выбор технического заказчика [13; 15].

Организация: управляющая компания / органы местного самоуправления.

Технический заказчик может быть выбран с помощью конкурсного отбора или тендера, а также возможно при-

Документация: договор об оказании услуг.

Сроки: на данном этапе мы можем опираться лишь на ориентировочные сроки поиска технического заказчика, так как длительность этапа зависит от процедуры выбора – тендер или открытый конкурс требуют больше времени, нежели привлечение ФКР. Ориентировочные сроки составляют от 1 до 2 месяцев.

3. Рассмотрение заявки и формирование работ [7; 15].

Организации: органы местного самоуправления, технический заказчик.

Органы местного самоуправления или технический заказчик проверяют заявление на соответствие требованиям, в случае необходимости дополнительно проводят обследование здания для оценки состояния повреждений отдельных конструктивных элементов и инженерных систем. После этого разрабатывается перечень необходи-

Документация: заключение о необходимости проведения работ, акт обследования, план работ.

Сроки: сроки рассмотрения заявки и проведения дополнительного обследования здания занимают от 1 до 2 месяцев, в зависимости от сложности и объёма объекта.

4. Финансирование и включение в программу ФКР [15-16].

Организации: органы местного самоуправления, Фонд капитального ремонта.

После утверждения перечня необходимых работ, МКД включают в автоматизированную систему управления Фонда капитального ремонта, подтверждается финансирование от государственного Фонда капитального ремонта

Документация: акты об утверждении бюджета, выписка о включении в программу.

Сроки: от 1 недели до 1 месяца.

5. Разработка технического задания [6; 8; 17].

Организация: технический заказчик.

Технический заказчик разрабатывает техническое задание, которое необходимо для разработки проектной документации и проведения тендера, на основании перечня работ и суммы финансирования.

Техническое задание включает в себя: сведения об объекте, цель выполнения конкретных ремонтных работ, список всех работ и их объёмы, требование к материалам и оборудованию, технические требования, требования к проектной документации (состав, расчёты, разделы), сроки выполнения работ, смета (ориентировочная стоимость работ), контроль качества.

Документация: перечень требований к проекту, рекомендации, техническое задание.

Сроки: от 1 недели до 1 месяца.

6. Согласование технического задания.

Организация: технический заказчик, управляющая компания, органы местного самоуправления, государственный Фонд капитального ремонта, экспертные организации, органы государственного строительного надзора, санитарные и пожарные службы.

Технический заказчик согласовывает техническое задание (далее – ТЗ) с рядом организаций:

- Управляющая компания представляет интересы жильцов, согласовывая ТЗ, подтверждает соответствие перечня работ с потребностью здания.
- Органы местного самоуправления ТЗ должно соответствовать региональной программе и планам капитального ремонта.
- Государственный фонд капитально ремонта ТЗ должно соответствовать нормативам региона и бюджету.

Дополнительные организации, с которыми нужно согласовывать техническое задание, при определенных усториях:

• Экспертные организации — независимые эксперты. Согласовывание с этой организацией требуется, если в регионе высокая сейсмическая активность или планируются мероприятия по повышению энерго-

эффективности здания.

- Органы государственного строительного надзора учувствуют в согласовании ТЗ, если работы затрагивают изменение конструктивных элементов задания.
- Санитарные и пожарные службы если есть работы, влияющие на противопожарную безопасность и санитарные нормы.

Документация: протоколы согласования и заверенное техническое задание.

Сроки: согласование ТЗ занимает от 1 до 2 недель.

7. Подготовка документации для проведения тендера [12; 18].

Организация: технический заказчик.

Технический заказчик разрабатывает документы для участия в тендере. К этим документам относятся:

- Проект договора;
- Конкурсная документация;
- Требования к квалификации участников;
- Смета затрат на проектирование;
- Сроки выполнения работ;
- Порядок оценки и критерии выбора победителя ендеров;
- Перечень необходимых лицензий и разрешений.

Документация: заявка на проведение тендера, условия проведения тендера, техническое задание.

Сроки: подготовка документов для проведения тендера занимает от 1 недели до 1 месяца.

Ориентировочный расчёт продолжительности выполнения процедуры по подготовке к проведению тендера на разработку ПД на проведение работ по капитальному ремонту МКД по минимальным и максимальным срокам реализации этапов рассматриваемой процедуры представлен на рисунке 3.

Ориентировочная продолжительность выполнения процедуры по подготовке к проведению тендера на разработку ПД на проведение работ по капитальному ремонту МКД составляет от 3 месяцев и 2 недель до 8 месяцев и 2 недель.

Анализ взаимодействия участников капитального ремонта и разрабатываемой документации на этапах выполнения рассматриваемой процедуры смоделирован с использованием BPMN-нотации и представлен на рисунке 4. Визуализация рассматриваемой процедуры позволяет определить участников процедуры, трудовые затраты и алгоритм выполнения процессов.

Заключение

В результате исследования установлено 7 этапов процедуры по подготовке к проведению тендера на разра-

Рис. 3. Продолжительность выполнения этапов и процедуры по подготовке к проведению тендера на разработку ПД на проведение работ по капитальному ремонту МКД

Fig. 3. Duration of the stages and procedure for preparation for the tender for the development of design documentation for capital repair of apartment buildings

кинэлаьдпуомьэ **БХНИНБСКИЙ ЗВКВЗЧИК** киньпмох кышокпавапу

ние работ по на проведе разработку ПД На Рис. 4. Модель взаимодействия участников капитального ремонта

ботку ПД на проведение работ по капитальному ремонту МКЛ.

Рассчитана ориентировочная продолжительность процессов на этапах процедуры в частности и выполнения процедуры по подготовке к проведению тендера на разработку ПД на проведение работ по капитальному ремонту МКД в целом, которая составляет от 3 месяцев и 2 недель до 8 месяцев и 2 недель. Последующее выполнение процедур по проведению тендера, непосредственной разработке ПД и проведения экспертизы (при необходимости) увеличит рассчитанную продолжительность, что под-

СПИСОК ЛИТЕРАТУРЫ

- 1. Ильина, Е. В. Нормативно-методическое регулирование и научные методы управления капитальным ремонтом общего имущества в многоквартирных жилых домах / Е. В. Ильина, В. Д. Горелова, Д. Н. Морозова // Экономика строительства и жилищно-коммунального хозяйства. 2024. № 3 (8). С. 40–52.
- 2. Сеферян, Л. А. Организация фонда капитального ремонта как решение проблем развития жилищного фонда в Ростовской области / Л. А. Сеферян, Е. Е. Пингин // Инженерный вестник Дона. 2016. № 1. URL: ivdon.ru/ru/magazine/archive/n1y2016/3530.
- Писаренко, П. И. Механизм формирования программы капитального ремонта / П. И. Писаренко, О. А. Гужова // Актуальные научные исследования. – Пенза: Наука и Просвещение. – 2022. – С. 206–210.
- Кузьмина, Т. К. Систематизация критериев определения очерёдности проведения капитального ремонта общего имущества в многоквартирных домах / Т. К. Кузьмина, Д. Д. Бабушкина // Инженерный вестник Дона. – 2023. – № 9 (105). – С. 405–416.
- Анализ основных проблем планирования программ капитального ремонта / А. Ю. Кагазежев, Р. С. Фатуллаев, А. О. Хубаев, Я. В. Шестерикова // Перспективы науки. 2022. № 12 (159). С. 81 86.
- 6. О Фонде содействия реформированию жилищно-коммунального хозяйства : Федеральный закон № 185-ФЗ от 21 июля 2007 года : принят Государственной Думой 6 июля 2007 года : одобрен Советом Федерации 11 июля 2007 года. – Собрание законодательства Российской Федерации. – 2007. – № 30. – Ст. 3799.
- 7. Жилищный кодекс Российской Федерации : Федеральный закон № 188-Ф3 от 29.12.2004 : принят Государственной Думой 22 декабря 2004 года : одобрен Советом Федерации 24 декабря 2004 года. Москва, 2004.
- 8. Об утверждении Формы задания застройщика или технического заказчика на проектирование объекта капитального строительства, строительство, реконструкция, капитальный ремонт которого осуществляются с привлечением средств бюджетной системы Российской Федерации: Приказ Министерства строительства и жилищно-коммунального хозяйства Российской Федерации от 21.04.2022 № 307/пр: вступило в силу с 19 июня 2022 года Минстрой России. Официальный интернет-портал правовой информации

тверждает необходимость учёта рассматриваемых процедур при формировании краткосрочного плана капитального ремонта МКЛ.

Разработанная модель взаимодействия участников процесса на этапах процедуры по подготовке к проведению тендера на разработку ПД на проведение работ по капитальному ремонту МКД с использованием ВРМN-нотации позволяет установить последовательность процессов взаимодействия и визуально оценить сложность рассматриваемой процедуры.

- www.pravo.gov.ru, 8 июня 2022 г., № 0001202206080003. 2022.
- О составе разделов проектной документации и требованиях к их содержанию: Постановление Правительства РФ № 87 от 16.02.2008: действует до 1 сентября 2028 года. Собрание законодательства Российской Федерации от 2008. № 8. Ст. 744.
- 10. Статьи 49, 51 / Градостроительный кодекс Российской Федерации от 29.12.2004 № 190-Ф3 : ред. от 01.05.2024 : принят Государственной Думой 22 декабря 2004 года : одобрен Советом Федерации 24 декабря 2004 года. Москва, 2004.
- 11. О предоставлении финансовой поддержки за счёт средств государственной корпорации Фонда содействия реформированию жилищно-коммунального хозяйства на модернизацию систем коммунальной инфраструктуры: Постановление Правительства РФ № 1451 от 26.12.2015: вступило в силу с 12 января 2016 года / Минстрой России. Собрание законодательства Российской Федерации от 11 января 2016 г. № 2 (часть I). Ст. 330.
- 12. О контрактной системе в сфере закупок товаров, работ, услуг для обеспечения государственных и муниципальных нужд: Федеральный закон № 44-ФЗ: принят Государственной Думой 22 марта 2013 года: одобрен Советом Федерации 27 марта 2013 года. Официальный интернетпортал правовой информации www.pravo.gov.ru, 8.4.2013, ст. 0001201304080023. 2013.
- 13. Какадий, В. И. Управление системой капитального ремонта многоквартирных домов / В. И. Какадий, И. И. Какадий // Вестник евразийской науки. 2020. Т. 12, № 2. С. 43.
- 14. Гассуль, В. А. Управление капитальным ремонтом многоквартирного дома в системе ЖКХ / В. А. Гассуль. – Санкт-Петербург : Питер, 2015. – 290 с.
- Кожевников, С. А. Особенности и проблемы формирования новой системы капитального ремонта многоквартирных домов в регионах России / С. А. Кожевников // Проблемы развития территории. – 2016. – № 4 (84). – С. 61–76.
- 16. Шубенкова, В. А. Особенности разработки технического задания / В. А. Шубенкова, Р. Ф. Карачурина // Экономика и социум. 2013. № 4-2 (9). С. 999–1002.
- 17. Купчикова, Н. В. Строительные тендеры и особенности их проведения / Н. В. Купчикова, Д. И. Гужвинский. DOI 10.24411/2409-3203-2018-11650 // Эпоха науки. 2018. № 16. С.182–186.

REFERENCES

- Ilyina, E. V. Normativno-metodicheskoye regulirovaniye i nauchnyye metody upravleniya kapital'nym remontom obshhego imushchestva v mnogokvartirnykh zhilykh domakh [Normative and methodological regulation and scientific methods of managing capital repairs of common property in apartment buildings] / E. V. Ilyina, V. D. Gorelova, D. N. Morozova // Ehkonomika stroitel'stva i zhilishhnokommunal'nogo khozyajstva [Construction and Housing and Utility Sector]. – 2024. – No. 3 (8). – Pp. 40–52.
- 2. Seferyan, L. A. Organizatsiya fonda kapital'nogo remonta kak
- reshenie problem razvitiya zhilishhnogo fonda v Rostovskoj oblasti [Organization of the capital repair fund as a solution to the problems of housing development in the Rostov region] / L. A. Seferyan, E. E. Pingin // Inzhenernyj vestnik Dona [Engineering Bulletin of the Don]. 2016. No. 1. URL: ivdon.ru/ru/magazine/archive/n1y2016/3530.
- 3. Pisarenko, P. I. Mekhanizm formirovaniya programmy kapital'nogo remonta [The mechanism of forming the capital repair program] / P. I. Pisarenko, O. A. Guzhova // Aktual'nye nauchnye issledovaniya [Current scientific research]. Penza: Nauka i Prosveshhenie [Science and Education]. 2022. –

- Pp. 206-210.
- 4. Kuzmina, T. K. Sistematizatsiya kriteriyev opredeleniya ocherednosti provedeniya kapital'nogo remonta obshhego imushhestva v mnogokvartirnykh domakh [Systematization of criteria for determining the priority of major repairs of common property in apartment buildings] / T. K. Kuzmina, D. D. Babushkina // Inzhenernyj vestnik Dona [Engineering Bulletin of the Don]. 2023. No. 9 (105). Pp. 405–416.
- Analiz osnovnykh problem planirovaniya programm kapital'nogo remonta [The analysis of the main problems in planning of overhaul programs] / A. Yu. Kagazezhev, R. S. Fatullaev, A. O. Khubaev, Ya. V. Shesterikova // Perspektivy nauki [Science prospects]. – 2022. – No. 12 (159). – Pp. 81–86.
- 6. O Fonde sodejstviya reformirovaniyu zhilishhno-kommunal'nogo khozyajstva: Federal'nyj zakon № 185-FZ ot 21 iyulya 2007 goda [On the Fund for Assistance to Housing and Communal Services Reform: Federal Law No. 185-FZ of July 21, 2007]: prinyat Gosudarstvennoj Dumoj 6 iyulya 2007 goda: odobren Sovetom Federatsii 11 iyulya 2007 goda [adopted by the State Duma on July 6, 2007: approved by the Federation Council on July 11, 2007]. Sobranie zakonodatel'stva Rossijskoj Federatsii [Collection of legislation of the Russian Federation]. 2007. No. 30. Art. 3799.
- 7. Zhilishhnyj kodeks Rossijskoj Federatsii: Federal'nyj zakon Nº 188-FZ ot 29.12.2004 [Housing Code of the Russian Federation: Federal Law No. 188-FZ dated December 29, 2004]: prinyat Gosudarstvennoj Dumoj 22 dekabrya 2004 goda: odobren Sovetom Federatsii 24 dekabrya 2004 goda [adopted by the State Duma on December 22, 2004: approved by the Federation Council on December 24, 2004]. Moscow, 2004.
- 8. Ob utverzhdenii Formy zadaniya zastrojshhika ili tekhnicheskogo zakazchika na proektirovanie ob"ekta kapital'nogo stroitel'stva, stroitel'stvo, rekonstruktsiya, kapital'nyj remont kotorogo osushhestvlyayutsya s privlecheniem sredstv byudzhetnoj sistemy Rossijskoj Federatsii [On approval of the Assignment Form of the developer or technical customer for the design of a capital construction facility, construction, reconstruction, major repairs of which are carried out with the involvement of funds from the budget system of the Russian Federation]: Prikaz Ministerstva stroitel'stva i zhilishhno-kommunal'nogo khozvaistva Rossijskoj Federatsii ot 21.04.2022 № 307/pr [Order of the Ministry of Construction and Housing and Communal Services of the Russian Federation dated 04/21/2022 No. 307/pr]: vstupilo v silu s 19 iyunya 2022 qoda Minstroj Rossii [entered into force on June 19, 2022 of the Ministry of Construction of the Russian Federation]. - Ofitsial'nyj internet-portal pravovoj informatsii [The official Internet portal of legal information] www.pravo.gov.ru, June 8, 2022, No. 0001202206080003. -
- 9. O sostave razdelov proektnoj dokumentatsii i trebovaniyakh k ikh soderzhaniyu [On the composition of sections of project documentation and requirements for their content]: Postanovlenie Pravitel'stva RF № 87 ot 16.02.2008: dejstvuet do 1 sentyabrya 2028 goda [Decree of the Government of the Russian Federation No. 87 dated 02/16/2008: valid until September 1, 2028]. Sobranie zakonodatel'stva Rossijskoj Federatsii ot 2008 [Collection of legislation of the Russian Federation of 2008]. No. 8. Art. 744.

СТРОИТЕЛЬНОЕ ПРОИЗВОДСТВО № 4 (52)'2024

- 10. Ctat'i 49, 51 [Articles 49, 51] / Gradostroitel'nyj kodeks Rossijskoj Federatsii ot 29.12.2004 № 190-FZ : red. ot 01.05.2024 [Urban Planning Code of the Russian Federation of 29.12.2004 № 190-FZ : ed. Dated 05/01/2024] : prinyat Gosudarstvennoj Dumoj 22 dekabrya 2004 goda : odobren Sovetom Federatsii 24 dekabrya 2004 goda [adopted by the State Duma on December 22, 2004 : approved by the Federation Council on December 24, 2004]. Moscow, 2004.
- 11. O predostavlenii finansovoj podderzhki za schyot sredstv gosudarstvennoj korporatsii Fonda sodejstviya reformirovaniyu zhilishhno-kommunal'nogo khozyajstva na modernizatsiyu sistem kommunal'noj infrastruktury [On the provision of financial support from the funds of the state corporation the Fund for Assistance to Housing and Communal Services Reform for the Modernization of Municipal Infrastructure systems]: Postanovlenie Pravitel'stva RF № 1451 ot 26.12.2015 [Decree of the Government of the Russian Federation No. 1451 dated December 26, 2015]: vstupilo v silu s 12 yanvarya 2016 goda [entered into force on January 12, 2016] / Minstroj Rossii [Ministry of Construction of Russia. Sobranie zakonodatel'stva Rossijskoj Federatsii ot 11 yanvarya 2016 g. [Collection of Legislation of the Russian Federation dated January 11, 2016]. No. 2 (Part I). Art. 330.
- 12. O kontraktnoj sisteme v sfere zakupok tovarov, rabot, uslug dlya obespecheniya gosudarstvennykh i munitsipal'nykh nuzhd: Federal'nyj zakon № 44-FZ [On the contract system in the field of procurement of goods, works, and services for State and Municipal Needs: Federal Law No. 44-FZ]: prinyat Gosudarstvennoj Dumoj 22 marta 2013 goda: odobren Sovetom Federatsii 27 marta 2013 goda [adopted by the State Duma on March 22, 2013: approved by the Federation Council on March 27, 2013]. Ofitsial'nyj internet-portal pravovoj informatsii [The official Internet portal of legal information] www.pravo.gov.ru, 8.4.2013, art. 0001201304080023. 2013.
- 13. Kakady, V. I. Upravlenie sistemoj kapital'nogo remonta mnogokvartirnykh domov [Management of the system of capital repair of apartment buildings] / V. I. Kakady, I. I. Kakady // Vestnik evrazijskoj nauki [Bulletin of Eurasian Science]. 2020. Vol. 12, No. 2. P. 43.
- 14. Gassul, V. A. Upravleniye kapital'nym remontom mnogokvartirnogo doma v sisteme ZHKKH [Management of capital repair of an apartment building in the system of housing and communal services] / V.A. Gassul. St. Petersburg: Piter, 2015. 290 p.
- 15. Kozhevnikov, S. A. Osobennosti i problemy formirovaniya novoj sistemy kapital'nogo remonta mnogokvartirnykh domov v regionakh Rossii [Features and problems of forming a new system of capital repair of apartment buildings in the regions of Russia] / S. A. Kozhevnikov // Problemy razvitiya territorii [Problems of territory development]. 2016. No. 4 (84). Pp. 61–76.
- Shubenkova, V. A. Osobennosti razrabotki tekhnicheskogo zadaniya [Peculiarities of technical task development] / V. A. Shubenkova, R. F. Karachurina // Ehkonomika i sotsium [Economics and Socium]. – 2013. – No. 4-2 (9). – Pp. 999 – 1002.
- 17. Kupchikova, N. V. Stroitel'nye tendery i osobennosti ikh provedeniya [Construction tenders and features of their implementation] / N. V. Kupchikova, D. I. Guzhvinsky. DOI 10.24411/2409-3203-2018-11650 // Ehpokha nauki [The age of science]. 2018. No. 16. Pp. 182–186.

Научно-исследовательский институт проектирования, технологии и экспертизы строительства

- Технический заказчик
- Строительный контроль
- Проектирование
- Лабораторное сопровождение
- Обследование зданий и сооружений
- Геодезическое сопровождение и мониторинг
- Судебно-техническая экспертиза

8 (495) 162-64-42

ПРАВИЛА ДЛЯ АВТОРОВ

- 1. Статья или её части не должны быть ранее опубликованы или находиться на рассмотрении в других изданиях. Автор несёт ответственность за соответствие информации, содержащейся в представленных документах.
- 2. Статьи должны содержать результаты научных исследований, аналитику, описание проектов и др. в области технического регулирования в строительстве.
- 3. Статью необходимо представить в электронном виде.
- 4. Перед названием статьи должен быть указан индекс УДК.
- 5. Название статьи, Ф. И. О. авторов, аннотацию, ключевые слова, название таблиц и иллюстраций следует приводить на русском и английском языках.
- 6. На отдельном листе нужно представить сведения об авторах: фамилия, имя, отчество (полностью), учёная степень, звание, должность, место работы, почтовый адрес, телефон и адрес электронной почты.
- 7. Объём рукописи не должен превышать 20 страниц (файл в формате .doc в MS Word).
- 8. Текст статьи должен быть напечатан следующим образом: с подрисуночными подписями, номерами рисунков и необходимыми пояснениями к ним; шрифт - Times New Roman, 12 пт., межстрочный интервал - полуторный.
- 9. Рисунки с подрисуночными подписями и номерами следует направлять отдельными файлами в формате .jpeg (разрешение не менее 300 dpi). Имя файла должно соответствовать наименованию или номеру рисунка в тексте статьи.
- 10. Библиографический список на русском и английском языках должен включать только литературу, цитируемую в статье. Ссылки на источники следует приводить в тексте в квадратных скобках. Список оформляется в соответствии с ГОСТ 7.0.5 - 2008.

Страна: Россия Город: Москва ПЕРИОДИЧЕСКОЕ ИЗДАНИЕ (4 ВЫПУСКА В ГОД)

ISSN 2658-5340 (Print)

Научно-технический журнал «Строительное производство» издаётся с 2010 года под следующими наименованиями:

c 2010 года – «Техническое регулирование. Строительство. Проектирование. Изыскания»

с 2012 года – «Технология и организация строительного производства»

с 2019 года - «Строительное производство»

Издатель: ООО «НИИ ПТЭС»

Учредитель Муря Д. В.

Главный редактор Лапидус А. А.

Выпускающий редактор Бабушкина Д. Д.

Журнал зарегистрирован Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор)

Свидетельство о регистрации ПИ № ФС 77 – 75299 от 25.03.2019 ЭЛ № ФС 77 – 75165 от 22.02.2019

Цитирование, частичное или полное воспроизведение материалов – только с согласия редакции

Авторы опубликованных материалов несут ответственность за достоверность приведенных в статьях сведений, точность данных по цитируемой литературе и за использование в статьях данных, не подлежащих открытой публикации

Редакция может опубликовать статьи в порядке обсуждения, не разделяя точку зрения автора

Редакция не несет ответственности за содержание рекламы и объявлений

СТРОИТЕЛЬНОЕ ПРОИЗВОДСТВО 4 (52) 2024 Дата публикации: 27 декабря 2024 года

Отпечатано в типографии ООО «PROMZONA» 105066, Москва, ул. Ольховская, д. 14, стр. 4 Тираж 550 экз. Свободная цена

Корректор: Широкова М. А. Дизайн и вёрстка: Соколов А. Е.

Телефон: +7 (495) 162 61 02 e-mail: info@build-pro.press сайт журнала: www.build-pro.press 127018, РФ, Москва, Сущёвский Вал, д. 16, стр. 5, этаж 4, кабинет 405 сайт издательства: www.mosnec.com